Suppr超能文献

proMAD:蛋白质微阵列的半定量密度计量测定。

proMAD: semiquantitative densitometric measurement of protein microarrays.

机构信息

Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, 4059, Australia.

School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, Kelvin Grove, Queensland, 4059, Australia.

出版信息

BMC Bioinformatics. 2020 Feb 24;21(1):72. doi: 10.1186/s12859-020-3402-4.

Abstract

BACKGROUND

Protein microarrays are a versatile and widely used tool for analyzing complex protein mixtures. Membrane arrays utilize antibodies which are captured on a membrane to specifically immobilize several proteins of interest at once. Using detection antibodies, the bound protein-antibody-complex is converted into visual signals, which can be quantified using densitometry. The reliability of such densitometric assessments depends on a variety of factors, not only sample preparation and the choice of acquisition device but also the selected analysis software and the algorithms used for readout and processing data. Currently available software packages use a single image of a membrane at an optimal exposure time selected for that specific experimental framework. This selection is based on a user's best guess and is subject to inter-user variability or the acquisition device algorithm. With modern image acquisition systems proving the capacity to collect signal development over time, this information can be used to improve densitometric measurements. Here we introduce proMAD, a toolkit for protein microarray analysis providing a novel systemic approach for the quantification of membrane arrays based on the kinetics of the analytical reaction.

RESULTS

Briefly, our toolkit ensures an exact membrane alignment, utilizing basic computer vision techniques. It also provides a stable method to estimate the background light level. Finally, we model the light production over time, utilizing the knowledge about the reaction kinetics of the underlying horseradish peroxidase-based signal detection method.

CONCLUSION

proMAD incorporates the reaction kinetics of the enzyme to model the signal development over time for each membrane creating an individual, self-referencing concept. Variations of membranes within a given experimental set up can be accounted for, allowing for a better comparison of such. While the open-source library can be implemented in existing workflows and used for highly user-tailored analytic setups, the web application, on the other hand, provides easy platform-independent access to the core algorithm to a wide range of researchers. proMAD's inherent flexibility has the potential to cover a wide range of use-cases and enables the automation of data analytic tasks.

摘要

背景

蛋白质微阵列是一种多功能且广泛使用的工具,可用于分析复杂的蛋白质混合物。膜阵列利用抗体固定在膜上,一次特异性地固定多个感兴趣的蛋白质。使用检测抗体,结合的蛋白质-抗体复合物被转化为可视信号,可使用密度计进行定量。这种密度计评估的可靠性取决于多种因素,不仅包括样品制备和采集设备的选择,还包括所选的分析软件以及用于读取和处理数据的算法。目前可用的软件包使用在特定实验框架下为该特定实验框架选择的最佳曝光时间的膜的单个图像。这种选择是基于用户的最佳猜测,并且受到用户间变异性或采集设备算法的影响。随着现代图像采集系统证明了能够随着时间的推移收集信号发展,这些信息可用于改善密度计测量。在这里,我们介绍了 proMAD,这是一种蛋白质微阵列分析工具包,它提供了一种基于分析反应动力学的膜阵列定量分析的新系统方法。

结果

简而言之,我们的工具包利用基本的计算机视觉技术确保了膜的精确对准。它还提供了一种稳定的方法来估计背景光水平。最后,我们利用基于辣根过氧化物酶的信号检测方法的反应动力学知识,对随时间产生的光进行建模。

结论

proMAD 将酶的反应动力学纳入其中,为每个膜随时间建立信号发展模型,创建一个独立的、自我参照的概念。在给定的实验设置中,可以考虑到膜之间的变化,从而可以更好地进行比较。虽然开源库可以在现有的工作流程中实现,并用于高度用户定制的分析设置,但另一方面,网络应用程序为广泛的研究人员提供了易于使用且独立于平台的核心算法访问。proMAD 固有的灵活性有可能涵盖广泛的用例,并能够实现数据分析任务的自动化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a95/7041094/8940b70fd15e/12859_2020_3402_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验