Suppr超能文献

反应变异性作为皮肤温度生物反馈性能的预测指标。

Response variability as a predictor of skin temperature biofeedback performance.

作者信息

Barrett H R, Tucker J H, Grier W P, Pettaway G T

机构信息

Department of Psychology, Tennessee State University, Nashville 37203.

出版信息

Int J Neurosci. 1988 Sep;42(1-2):45-9. doi: 10.3109/00207458808985757.

Abstract

The purpose of the present study was to compare the power of three subject variables as predictors of performance in a skin temperature biofeedback task. Data from three related experiments (N = 52) designed to train digital skin temperature increases in four sessions were pooled. Three measures (mean skin temperature, standard deviation and standard error of estimate), derived from a prefeedback instructional control session, were correlated with three criteria derived from training sessions (temperature change in the first, last and mean of training sessions). There were significant correlations with standard error of estimate, the largest with the mean change measure, accounting for 14% of temperature variance. The findings are consistent with an operant conditioning model of biofeedback learning, and have implications for more optimal training methods and experimental designs based on assessment of the standard error of estimate.

摘要

本研究的目的是比较三个主体变量作为皮肤温度生物反馈任务中表现预测指标的效力。我们汇总了来自三个相关实验(N = 52)的数据,这些实验旨在通过四个阶段训练使数字皮肤温度升高。从反馈前的指导性对照阶段得出的三项测量指标(平均皮肤温度、标准差和估计标准误差)与从训练阶段得出的三项标准(训练第一阶段、最后阶段及平均阶段的温度变化)进行了相关性分析。估计标准误差存在显著相关性,其中与平均变化指标的相关性最大,占温度方差的14%。这些发现与生物反馈学习的操作性条件反射模型一致,并对基于估计标准误差评估的更优化训练方法和实验设计具有启示意义。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验