State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
Epigenetics Chromatin. 2020 Feb 24;13(1):8. doi: 10.1186/s13072-020-00330-2.
An increasing number of nucleic acid modifications have been profiled with the development of sequencing technologies. DNA N-methyladenine (6mA), which is a prevalent epigenetic modification, plays important roles in a series of biological processes. So far, identification of DNA 6mA relies primarily on time-consuming and expensive experimental approaches. However, in silico methods can be implemented to conduct preliminary screening to save experimental resources and time, especially given the rapid accumulation of sequencing data.
In this study, we constructed a 6mA predictor, p6mA, from a series of sequence-based features, including physicochemical properties, position-specific triple-nucleotide propensity (PSTNP), and electron-ion interaction pseudopotential (EIIP). We performed maximum relevance maximum distance (MRMD) analysis to select key features and used the Extreme Gradient Boosting (XGBoost) algorithm to build our predictor. Results demonstrated that p6mA outperformed other existing predictors using different datasets.
p6mA can predict the methylation status of DNA adenines, using only sequence files. It may be used as a tool to help the study of 6mA distribution pattern. Users can download it from https://github.com/Konglab404/p6mA.
随着测序技术的发展,越来越多的核酸修饰被描绘出来。DNA N6-甲基腺嘌呤(6mA)是一种普遍存在的表观遗传修饰,在一系列生物学过程中发挥着重要作用。到目前为止,DNA 6mA 的鉴定主要依赖于耗时且昂贵的实验方法。然而,计算方法可以用于进行初步筛选,以节省实验资源和时间,特别是考虑到测序数据的快速积累。
在这项研究中,我们从一系列基于序列的特征(包括理化性质、位置特异性三核苷酸倾向(PSTNP)和电子-离子相互作用赝势(EIIP))中构建了一个 6mA 预测器 p6mA。我们进行了最大相关性最大距离(MRMD)分析以选择关键特征,并使用极端梯度提升(XGBoost)算法来构建我们的预测器。结果表明,p6mA 在使用不同数据集时优于其他现有预测器。
p6mA 可以仅使用序列文件预测 DNA 腺嘌呤的甲基化状态。它可以作为一种工具来帮助研究 6mA 的分布模式。用户可以从 https://github.com/Konglab404/p6mA 下载它。