Suppr超能文献

生物信息学分析鉴定间变性甲状腺癌的关键候选基因和通路。

Identification of key candidate genes and pathways in anaplastic thyroid cancer by bioinformatics analysis.

机构信息

Emergency Department, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, PR China.

Department of Urology Surgery, Affiliated Hospital of Northwest Minzu University, Second People's Hospital of Gansu Province, Lanzhou 730030, Gansu, PR China.

出版信息

Am J Otolaryngol. 2020 May-Jun;41(3):102434. doi: 10.1016/j.amjoto.2020.102434. Epub 2020 Feb 17.

Abstract

BACKGROUND

Anaplastic thyroid carcinoma (ATC) is a refractory and poor prognosis tumor Present study aimed to investigate the underlying biological functions and pathways involved in the development of ATC and to identify potential hub genes and candidate biomarkers of ATC.

MATERIALS AND METHODS

Bioinformatics analyses were performed to identify the differentially expressed genes (DEGs) between ATC tissue samples and adjacent normal tissue samples. Protein-protein interaction (PPI) networks of the DEGs were constructed using Search Tool for the Retrieval of Interacting Genes online tool and Cytoscape software and divided into sub-networks using the Molecular Complex Detection (MCODE) plug-in. DEGs in each module was analyzed by enrichment analysis of the KEGG Orthology Based Annotation System (KOBAS) web software version 3.0. Eventually, the hub genes from bioinformatics analysis were verified by qRT-PCR assay in different ATC cell lines.

RESULTS

Thirty hub genes were selected and three modules were built by the Cytoscape software from the PPI network. Seven genes (CDK1, CCNB2, BUB1B, CDC20, RRM2, CHEK1 and CDC45) were screened from thirty hub genes. Enrichment analysis showed that these hub genes were primarily accumulated in 'cell cycle', 'p53 signaling pathway', 'viral carcinogenesis', 'pyrimidine metabolism' and 'ubiquitin mediated proteolysis'. The results of qRT-PCR indicated that seven hub genes were unregulated in three ATC cell lines compared with normal thyroid gland cell.

CONCLUSIONS

These findings suggest that CDK1, CCNB2, BUB1B, CDC20, RRM2, CHEK1 and CDC45 may serve as novel diagnosis biomarkers and potential therapeutic target for ATC.

摘要

背景

间变性甲状腺癌(ATC)是一种难治性和预后不良的肿瘤。本研究旨在探讨 ATC 发展中涉及的潜在生物学功能和途径,并确定 ATC 的潜在关键基因和候选生物标志物。

材料和方法

通过生物信息学分析,比较 ATC 组织样本和相邻正常组织样本之间的差异表达基因(DEGs)。使用在线工具 Search Tool for the Retrieval of Interacting Genes 和 Cytoscape 软件构建 DEGs 的蛋白质-蛋白质相互作用(PPI)网络,并使用 Molecular Complex Detection(MCODE)插件将其分为子网络。使用 KEGG Orthology Based Annotation System(KOBAS)web 软件版本 3.0 对每个模块中的 DEGs 进行富集分析。最后,通过 qRT-PCR 检测不同 ATC 细胞系中生物信息学分析的关键基因。

结果

通过 Cytoscape 软件从 PPI 网络中筛选出 30 个关键基因,并构建了 3 个模块。从 30 个关键基因中筛选出 7 个基因(CDK1、CCNB2、BUB1B、CDC20、RRM2、CHEK1 和 CDC45)。富集分析表明,这些关键基因主要集中在“细胞周期”、“p53 信号通路”、“病毒致癌作用”、“嘧啶代谢”和“泛素介导的蛋白水解”。qRT-PCR 结果表明,与正常甲状腺细胞相比,7 个关键基因在三种 ATC 细胞系中均上调。

结论

这些发现表明,CDK1、CCNB2、BUB1B、CDC20、RRM2、CHEK1 和 CDC45 可能作为新型诊断生物标志物和 ATC 的潜在治疗靶点。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验