Suppr超能文献

纹状体微电路的生物物理模型表明,在 delta/theta 频率下交错的 gamma 和 beta 振荡介导了运动控制中的周期性。

A biophysical model of striatal microcircuits suggests gamma and beta oscillations interleaved at delta/theta frequencies mediate periodicity in motor control.

机构信息

Graduate program in Neuroscience, Center for Systems Neuroscience, Boston University, Boston, Massachusetts, United States of America.

Department of Mathematics & Statistics, Boston University, Boston, Massachusetts, United States of America.

出版信息

PLoS Comput Biol. 2020 Feb 25;16(2):e1007300. doi: 10.1371/journal.pcbi.1007300. eCollection 2020 Feb.

Abstract

Striatal oscillatory activity is associated with movement, reward, and decision-making, and observed in several interacting frequency bands. Local field potential recordings in rodent striatum show dopamine- and reward-dependent transitions between two states: a "spontaneous" state involving β (∼15-30 Hz) and low γ (∼40-60 Hz), and a state involving θ (∼4-8 Hz) and high γ (∼60-100 Hz) in response to dopaminergic agonism and reward. The mechanisms underlying these rhythmic dynamics, their interactions, and their functional consequences are not well understood. In this paper, we propose a biophysical model of striatal microcircuits that comprehensively describes the generation and interaction of these rhythms, as well as their modulation by dopamine. Building on previous modeling and experimental work suggesting that striatal projection neurons (SPNs) are capable of generating β oscillations, we show that networks of striatal fast-spiking interneurons (FSIs) are capable of generating δ/θ (ie, 2 to 6 Hz) and γ rhythms. Under simulated low dopaminergic tone our model FSI network produces low γ band oscillations, while under high dopaminergic tone the FSI network produces high γ band activity nested within a δ/θ oscillation. SPN networks produce β rhythms in both conditions, but under high dopaminergic tone, this β oscillation is interrupted by δ/θ-periodic bursts of γ-frequency FSI inhibition. Thus, in the high dopamine state, packets of FSI γ and SPN β alternate at a δ/θ timescale. In addition to a mechanistic explanation for previously observed rhythmic interactions and transitions, our model suggests a hypothesis as to how the relationship between dopamine and rhythmicity impacts motor function. We hypothesize that high dopamine-induced periodic FSI γ-rhythmic inhibition enables switching between β-rhythmic SPN cell assemblies representing the currently active motor program, and thus that dopamine facilitates movement in part by allowing for rapid, periodic shifts in motor program execution.

摘要

纹状体的振荡活动与运动、奖励和决策有关,在几个相互作用的频带中都有观察到。啮齿动物纹状体的局部场电位记录显示,多巴胺和奖励依赖性地在两种状态之间转换:一种是“自发”状态,涉及β(约 15-30 Hz)和低γ(约 40-60 Hz),另一种是涉及θ(约 4-8 Hz)和高γ(约 60-100 Hz)的状态,这是对多巴胺激动剂和奖励的反应。这些节律动力学的机制、它们的相互作用及其功能后果还没有得到很好的理解。在本文中,我们提出了一个纹状体微电路的生物物理模型,该模型全面描述了这些节律的产生和相互作用,以及它们被多巴胺的调制。基于之前的建模和实验工作表明,纹状体投射神经元(SPN)能够产生β振荡,我们表明,纹状体快速放电中间神经元(FSI)的网络能够产生δ/θ(即 2 到 6 Hz)和γ节律。在模拟的低多巴胺能音高下,我们的模型 FSI 网络产生低γ带振荡,而在高多巴胺能音高下,FSI 网络产生嵌套在δ/θ振荡内的高γ带活动。SPN 网络在两种情况下都产生β节律,但在高多巴胺能音高下,这种β振荡被δ/θ周期性爆发的γ频率 FSI 抑制打断。因此,在高多巴胺状态下,FSIγ和 SPNβ的包在δ/θ时间尺度上交替。除了对先前观察到的节律相互作用和转换的机制解释外,我们的模型还提出了一个假设,即多巴胺与节律性之间的关系如何影响运动功能。我们假设,高多巴胺诱导的周期性 FSIγ节律抑制使当前活跃的运动程序的 SPN 细胞集合之间的β节律切换,因此多巴胺通过允许运动程序执行的快速、周期性变化来促进运动。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/baed/7059970/3d415bec7195/pcbi.1007300.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验