Suppr超能文献

通过长读长测序鉴定用于临床的大片段种系结构变异所面临的挑战。

Challenges in identifying large germline structural variants for clinical use by long read sequencing.

作者信息

Jenko Bizjan Barbara, Katsila Theodora, Tesovnik Tine, Šket Robert, Debeljak Maruša, Matsoukas Minos Timotheos, Kovač Jernej

机构信息

Clinical Institute of Special Laboratory Diagnostics, University Children's Hospital, UMC, Ljubljana, Slovenia.

Institute of Chemical Biology, National Hellenic Research Centre, Athens, Greece.

出版信息

Comput Struct Biotechnol J. 2019 Dec 23;18:83-92. doi: 10.1016/j.csbj.2019.11.008. eCollection 2020.

Abstract

Genomic structural variations, previously considered rare events, are widely recognized as a major source of inter-individual variability and hence, a major hurdle in optimum patient stratification and disease management. Herein, we focus on large complex germline structural variations and present challenges towards target treatment via the synergy of state-of-the-art approaches and information technology tools. A complex structural variation detection remains challenging, as there is no gold standard for identifying such genomic variations with long reads, especially when the chromosomal rearrangement in question is a few Mb in length. A clinical case with a large complex chromosomal rearrangement serves as a paradigm. We feel that functional validation and data interpretation are of outmost importance for information growth to be translated into knowledge growth and hence, new working practices are highlighted.

摘要

基因组结构变异,以前被认为是罕见事件,现在已被广泛认可为个体间变异性的主要来源,因此也是最佳患者分层和疾病管理的主要障碍。在此,我们聚焦于大型复杂种系结构变异,并通过最先进的方法与信息技术工具的协同作用,呈现靶向治疗面临的挑战。复杂结构变异检测仍然具有挑战性,因为对于使用长读长识别此类基因组变异而言,尚无金标准,尤其是当所讨论的染色体重排长度达几兆碱基时。一个具有大型复杂染色体重排的临床病例可作为范例。我们认为功能验证和数据解读对于将信息增长转化为知识增长至关重要,因此强调了新的工作方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44b6/7026727/921fde4fdd4f/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验