Suppr超能文献

生物和非生物诱导子对大豆种子发育及悬浮培养过程中异黄酮生物合成的影响

Effect of biotic and abiotic elicitors on isoflavone biosynthesis during seed development and in suspension cultures of soybean ( L.).

作者信息

Devi M K Akitha, Kumar Gyanendra, Giridhar P

机构信息

Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysore, Karnataka 570 020 India.

出版信息

3 Biotech. 2020 Mar;10(3):98. doi: 10.1007/s13205-020-2065-1. Epub 2020 Feb 6.

Abstract

The present investigation aimed to look at the effects of biotic and abiotic elicitors during Soybean seed development and cell suspension culture in isoflavones accumulation. The expression levels of four major genes viz., CHS7, CHS8, IFS2, and IFS1 involved on isoflavones biosynthesis during seed developmental stages from R5L-R7 was seen in both MAUS-2 and JS-335 Soybean varieties. The R7 stage showed 1.24-fold upregulation of IFS1transcript level and considered as the control for Soybean seed development. Both varieties during R6-R8 stages responded differently to the foliar application of 10 µM SA, 10 µM MJ and 0.1% . The transcripts were upregulated by SA at the R7 stage with 5.21- and 4.68-fold in JS-335 and MAUS-2, respectively. expression was significantly increased by treatment at R7 stage with 3.98- and 3.21-fold in MAUS-2 and JS-335, respectively. The expression of CHS7 and CHS8 by 10 μM SA at R7 level revealed maximum up-regulation of 0.51- and 1.01-fold in MAUS-2; 0.37- and 0.82-fold in JS-335, respectively. In the soybean callus suspension culture, biosynthetic genes were used to validate the effects of elicitor on isoflavones. Both biotic and abiotic treatments contribute to the upregulation of and expression, that in turn, leads to the accumulation of isoflavone in seed development as well as in suspension cultures. These data further suggested that the is the key gene responsible for the isoflavone accumulation during elicitor treatment.

摘要

本研究旨在探讨生物和非生物诱导子对大豆种子发育及细胞悬浮培养过程中异黄酮积累的影响。在MAUS - 2和JS - 335两个大豆品种的种子发育阶段(从R5L到R7),观察到参与异黄酮生物合成的四个主要基因CHS7、CHS8、IFS2和IFS1的表达水平。R7阶段显示IFS1转录水平上调1.24倍,被视为大豆种子发育的对照。在R6 - R8阶段,两个品种对10 μM水杨酸(SA)、10 μM茉莉酸甲酯(MJ)和0.1% [此处原文缺失具体物质] 的叶面喷施反应不同。在R7阶段,SA使转录本上调,在JS - 335和MAUS - 2中分别上调5.21倍和4.68倍。[此处原文缺失具体物质] 处理在R7阶段使表达显著增加,在MAUS - 2和JS - 335中分别增加3.98倍和3.21倍。10 μM SA在R7水平对CHS7和CHS8的表达显示,在MAUS - 2中最大上调0.51倍和1.01倍;在JS - 335中分别上调0.37倍和0.82倍。在大豆愈伤组织悬浮培养中,利用生物合成基因验证诱导子对异黄酮的影响。生物和非生物处理均有助于上调[此处原文缺失具体基因] 和[此处原文缺失具体基因] 的表达,进而导致种子发育和悬浮培养中异黄酮的积累。这些数据进一步表明,[此处原文缺失具体基因] 是诱导子处理期间异黄酮积累的关键基因。

相似文献

2
Effects of high-temperature stress on soybean isoflavone concentration and expression of key genes involved in isoflavone synthesis.
J Agric Food Chem. 2012 Dec 26;60(51):12421-7. doi: 10.1021/jf3036319. Epub 2012 Dec 12.
3
Differential expression of isoflavone biosynthetic genes in soybean during water deficits.
Plant Cell Physiol. 2010 Jun;51(6):936-48. doi: 10.1093/pcp/pcq065. Epub 2010 Apr 29.
4
Methyl Jasmonate Increases Isoflavone Production in Soybean Cell Cultures by Activating Structural Genes Involved in Isoflavonoid Biosynthesis.
J Agric Food Chem. 2018 Apr 25;66(16):4099-4105. doi: 10.1021/acs.jafc.8b00350. Epub 2018 Apr 16.
5
LC-ESI-MS based characterisation of isoflavones in soybean ( (L.) Merr.) from India.
J Food Sci Technol. 2018 Dec;55(12):5045-5054. doi: 10.1007/s13197-018-3443-0. Epub 2018 Sep 29.
6
Transcriptome analysis reveals a critical role of CHS7 and CHS8 genes for isoflavonoid synthesis in soybean seeds.
Plant Physiol. 2007 Jan;143(1):326-38. doi: 10.1104/pp.106.086306. Epub 2006 Nov 10.
7
Differential abilities of Korean soybean varieties to biosynthesize glyceollins by biotic and abiotic elicitors.
Food Sci Biotechnol. 2017 Feb 28;26(1):255-261. doi: 10.1007/s10068-017-0034-1. eCollection 2017.

引用本文的文献

1
Serotonin-Salt-Stress Model-Induced Cell Growth Promoting an Antioxidant System and Secondary Metabolites in Cell Suspension Culture.
ACS Omega. 2024 Aug 22;9(35):37330-37342. doi: 10.1021/acsomega.4c05353. eCollection 2024 Sep 3.
3
Enhancement of anti-cancer compounds in fungal elicited-Oldenlandia umbellata culture.
Naunyn Schmiedebergs Arch Pharmacol. 2024 Dec;397(12):9777-9788. doi: 10.1007/s00210-024-03239-9. Epub 2024 Jun 25.
5
Identification of hub genes regulating isoflavone accumulation in soybean seeds GWAS and WGCNA approaches.
Front Plant Sci. 2023 Feb 14;14:1120498. doi: 10.3389/fpls.2023.1120498. eCollection 2023.
7
Soybean Callus-A Potential Source of Tocopherols.
Plants (Basel). 2021 Nov 25;10(12):2571. doi: 10.3390/plants10122571.
8
Recent Advances in Heterologous Synthesis Paving Way for Future Green-Modular Bioindustries: A Review With Special Reference to Isoflavonoids.
Front Bioeng Biotechnol. 2021 Jul 1;9:673270. doi: 10.3389/fbioe.2021.673270. eCollection 2021.

本文引用的文献

1
LC-ESI-MS based characterisation of isoflavones in soybean ( (L.) Merr.) from India.
J Food Sci Technol. 2018 Dec;55(12):5045-5054. doi: 10.1007/s13197-018-3443-0. Epub 2018 Sep 29.
2
High yield production of folates from soybean callus cultures in response to elicitors.
3 Biotech. 2018 Feb;8(2):80. doi: 10.1007/s13205-018-1101-x. Epub 2018 Jan 15.
3
Isoflavone Augmentation in Soybean Cell Cultures Is Optimized Using Response Surface Methodology.
J Agric Food Chem. 2014 Apr 9;62(14):3143-3149. doi: 10.1021/jf500207x. Epub 2014 Mar 31.
4
Effects of high-temperature stress on soybean isoflavone concentration and expression of key genes involved in isoflavone synthesis.
J Agric Food Chem. 2012 Dec 26;60(51):12421-7. doi: 10.1021/jf3036319. Epub 2012 Dec 12.
5
Differential expression of isoflavone biosynthetic genes in soybean during water deficits.
Plant Cell Physiol. 2010 Jun;51(6):936-48. doi: 10.1093/pcp/pcq065. Epub 2010 Apr 29.
6
Isoflavone composition, phenol content, and antioxidant activity of soybean seeds from India and Bulgaria.
J Agric Food Chem. 2008 Mar 26;56(6):2090-5. doi: 10.1021/jf072939a. Epub 2008 Feb 27.
7
Transcriptome analysis reveals a critical role of CHS7 and CHS8 genes for isoflavonoid synthesis in soybean seeds.
Plant Physiol. 2007 Jan;143(1):326-38. doi: 10.1104/pp.106.086306. Epub 2006 Nov 10.
8
Effect of chitosan on the biological properties of sweet basil (Ocimum basilicum L.).
J Agric Food Chem. 2005 May 4;53(9):3696-701. doi: 10.1021/jf0480804.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验