文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

纳米二氧化钛团聚增加了体外和体内的毒理学反应。

Agglomeration of titanium dioxide nanoparticles increases toxicological responses in vitro and in vivo.

机构信息

Laboratory of Toxicology, Unit of Environment and Health, Department of Public Health and Primary Care, KU Leuven, 3000, Leuven, Belgium.

Trace Elements and Nanomaterials, Sciensano, 1180, Uccle, Belgium.

出版信息

Part Fibre Toxicol. 2020 Feb 26;17(1):10. doi: 10.1186/s12989-020-00341-7.


DOI:10.1186/s12989-020-00341-7
PMID:32101144
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7045370/
Abstract

BACKGROUND: The terms agglomerates and aggregates are frequently used in the regulatory definition(s) of nanomaterials (NMs) and hence attract attention in view of their potential influence on health effects. However, the influence of nanoparticle (NP) agglomeration and aggregation on toxicity is poorly understood although it is strongly believed that smaller the size of the NPs greater the toxicity. A toxicologically relevant definition of NMs is therefore not yet available, which affects not only the risk assessment process but also hinders the regulation of nano-products. In this study, we assessed the influence of NP agglomeration on their toxicity/biological responses in vitro and in vivo. RESULTS: We tested two TiO NPs with different primary sizes (17 and 117 nm) and prepared ad-hoc suspensions composed of small or large agglomerates with similar dispersion medium composition. For in vitro testing, human bronchial epithelial (HBE), colon epithelial (Caco2) and monocytic (THP-1) cell lines were exposed to these suspensions for 24 h and endpoints such as cytotoxicity, total glutathione, epithelial barrier integrity, inflammatory mediators and DNA damage were measured. Large agglomerates of 17 nm TiO induced stronger responses than small agglomerates for glutathione depletion, IL-8 and IL-1β increase, and DNA damage in THP-1, while no effect of agglomeration was observed with 117 nm TiO. In vivo, C57BL/6JRj mice were exposed via oropharyngeal aspiration or oral gavage to TiO suspensions and, after 3 days, biological parameters including cytotoxicity, inflammatory cell recruitment, DNA damage and biopersistence were measured. Mainly, we observed that large agglomerates of 117 nm TiO induced higher pulmonary responses in aspirated mice and blood DNA damage in gavaged mice compared to small agglomerates. CONCLUSION: Agglomeration of TiO NPs influences their toxicity/biological responses and, large agglomerates do not appear less active than small agglomerates. This study provides a deeper insight on the toxicological relevance of NP agglomerates and contributes to the establishment of a toxicologically relevant definition for NMs.

摘要

背景:团聚体和聚集体这两个术语在纳米材料(NM)的监管定义中经常被使用,因此鉴于其对健康影响的潜在影响而受到关注。然而,尽管人们强烈认为 NP 的尺寸越小毒性越大,但纳米颗粒(NP)团聚和聚集对毒性的影响知之甚少。因此,目前还没有一个具有毒理学相关性的 NM 定义,这不仅影响风险评估过程,也阻碍了纳米产品的监管。在这项研究中,我们评估了 NP 团聚对其体外和体内毒性/生物学反应的影响。

结果:我们测试了两种具有不同原始粒径(17nm 和 117nm)的 TiO2 NPs,并制备了具有相似分散介质组成的小团聚体或大团聚体的特殊悬浮液。对于体外测试,将人支气管上皮(HBE)、结肠上皮(Caco2)和单核(THP-1)细胞系暴露于这些悬浮液中 24 小时,并测量细胞毒性、总谷胱甘肽、上皮屏障完整性、炎症介质和 DNA 损伤等终点。17nm TiO2 的大团聚体比小团聚体引起更强的谷胱甘肽耗竭、IL-8 和 IL-1β 增加以及 THP-1 的 DNA 损伤反应,而 117nm TiO2 的团聚则没有影响。在体内,C57BL/6JRj 小鼠通过口咽吸入或口服灌胃暴露于 TiO2 悬浮液中,3 天后测量包括细胞毒性、炎症细胞募集、DNA 损伤和生物持久性在内的生物学参数。主要观察到 117nm TiO2 的大团聚体在吸入小鼠中引起更高的肺部反应,在口服灌胃小鼠中引起更高的血液 DNA 损伤。

结论:TiO2 NPs 的团聚影响其毒性/生物学反应,而且大团聚体并不比小团聚体活性更低。这项研究深入了解了 NP 团聚体的毒理学相关性,并为 NM 建立具有毒理学相关性的定义做出了贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8b2/7045370/cb813d0b05cf/12989_2020_341_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8b2/7045370/63ef46f76026/12989_2020_341_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8b2/7045370/e8a4b01c3c19/12989_2020_341_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8b2/7045370/25644e569b8f/12989_2020_341_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8b2/7045370/cb813d0b05cf/12989_2020_341_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8b2/7045370/63ef46f76026/12989_2020_341_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8b2/7045370/e8a4b01c3c19/12989_2020_341_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8b2/7045370/25644e569b8f/12989_2020_341_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8b2/7045370/cb813d0b05cf/12989_2020_341_Fig4_HTML.jpg

相似文献

[1]
Agglomeration of titanium dioxide nanoparticles increases toxicological responses in vitro and in vivo.

Part Fibre Toxicol. 2020-2-26

[2]
Is aggregated synthetic amorphous silica toxicologically relevant?

Part Fibre Toxicol. 2020-1-3

[3]
Agglomeration State of Titanium-Dioxide (TiO) Nanomaterials Influences the Dose Deposition and Cytotoxic Responses in Human Bronchial Epithelial Cells at the Air-Liquid Interface.

Nanomaterials (Basel). 2021-11-27

[4]
Rat pulmonary responses to inhaled nano-TiO₂: effect of primary particle size and agglomeration state.

Part Fibre Toxicol. 2013-10-4

[5]
Impact of serum as a dispersion agent for in vitro and in vivo toxicological assessments of TiO nanoparticles.

Arch Toxicol. 2017-1

[6]
Assessing the Toxicological Relevance of Nanomaterial Agglomerates and Aggregates Using Realistic Exposure In Vitro.

Nanomaterials (Basel). 2021-7-9

[7]
Cytotoxicity of TiO2 nanoparticles to mussel hemocytes and gill cells in vitro: Influence of synthesis method, crystalline structure, size and additive.

Nanotoxicology. 2015

[8]
Mass or total surface area with aerosol size distribution as exposure metrics for inflammatory, cytotoxic and oxidative lung responses in rats exposed to titanium dioxide nanoparticles.

Toxicol Ind Health. 2017-4

[9]
Impact of agglomeration and different dispersions of titanium dioxide nanoparticles on the human related in vitro cytotoxicity and genotoxicity.

J Environ Monit. 2012-2

[10]
Biomarkers in Mytilus galloprovincialis exposed to suspensions of selected nanoparticles (Nano carbon black, C60 fullerene, Nano-TiO2, Nano-SiO2).

Aquat Toxicol. 2010-4-18

引用本文的文献

[1]
Applications of nanomaterials in head and neck squamous cell carcinoma: current progress and perspectives.

Discov Nano. 2025-8-18

[2]
Optimizing Sunscreen Safety: The Impact of TiO Particle Size on Toxicity and Biocompatibility.

Nanomaterials (Basel). 2025-6-19

[3]
Investigating the impact of the dispersion protocol on the physico-chemical identity and toxicity of nanomaterials: a review of the literature with focus on TiO particles.

Part Fibre Toxicol. 2025-5-13

[4]
Soil Texture Mediates the Toxicity of ZnO and FeO Nanoparticles to Microbial Activity.

Toxics. 2025-1-24

[5]
Effects of the Interactions Between Food Additive Titanium Dioxide and Matrices on Genotoxicity.

Int J Mol Sci. 2025-1-13

[6]
Hazard assessment of nanomaterials: how to meet the requirements for (next generation) risk assessment.

Part Fibre Toxicol. 2024-12-27

[7]
LungVis 1.0: an automatic AI-powered 3D imaging ecosystem unveils spatial profiling of nanoparticle delivery and acinar migration of lung macrophages.

Nat Commun. 2024-11-27

[8]
Exploring Tc-Labeled Iron-Binding Glycoprotein Nanoparticles as a Potential Nanoplatform for Sentinel Lymph Node Imaging: Development, Characterization, and Radiolabeling Studies.

ACS Omega. 2024-10-1

[9]
Chemical screens for particle-induced macrophage death identifies kinase inhibitors of phagocytosis as targets for toxicity.

J Nanobiotechnology. 2024-10-14

[10]
Black phosphorus for bone regeneration: Mechanisms involved and influencing factors.

Mater Today Bio. 2024-8-24

本文引用的文献

[1]
Different toxicity of anatase and rutile TiO nanoparticles on macrophages: Involvement of difference in affinity to proteins and phospholipids.

J Hazard Mater. 2017-4-9

[2]
Cyto-genotoxic and DNA methylation changes induced by different crystal phases of TiO-np in bronchial epithelial (16-HBE) cells.

Mutat Res. 2017-2

[3]
Preparation, characterization, and in vitro dosimetry of dispersed, engineered nanomaterials.

Nat Protoc. 2017-1-19

[4]
Epigenetic effects of carbon nanotubes in human monocytic cells.

Mutagenesis. 2017-1

[5]
Occupational exposure limits for manufactured nanomaterials, a systematic review.

Nanotoxicology. 2017-2

[6]
Titanium dioxide food additive (E171) induces ROS formation and genotoxicity: contribution of micro and nano-sized fractions.

Mutagenesis. 2017-1

[7]
The safety of nanostructured synthetic amorphous silica (SAS) as a food additive (E 551).

Arch Toxicol. 2016-12

[8]
Role of Surface Area, Primary Particle Size, and Crystal Phase on Titanium Dioxide Nanoparticle Dispersion Properties.

Nanoscale Res Lett. 2011-12

[9]
A Systematic Review of Reported Exposure to Engineered Nanomaterials.

Ann Occup Hyg. 2016-10

[10]
Oxidative stress pathways involved in cytotoxicity and genotoxicity of titanium dioxide (TiO2) nanoparticles on cells constitutive of alveolo-capillary barrier in vitro.

Toxicol In Vitro. 2016-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索