Laboratory of Toxicology, Unit of Environment and Health, Department of Public Health and Primary Care, KU Leuven, 3000, Leuven, Belgium.
Trace Elements and Nanomaterials, Sciensano, 1180, Uccle, Belgium.
Part Fibre Toxicol. 2020 Feb 26;17(1):10. doi: 10.1186/s12989-020-00341-7.
BACKGROUND: The terms agglomerates and aggregates are frequently used in the regulatory definition(s) of nanomaterials (NMs) and hence attract attention in view of their potential influence on health effects. However, the influence of nanoparticle (NP) agglomeration and aggregation on toxicity is poorly understood although it is strongly believed that smaller the size of the NPs greater the toxicity. A toxicologically relevant definition of NMs is therefore not yet available, which affects not only the risk assessment process but also hinders the regulation of nano-products. In this study, we assessed the influence of NP agglomeration on their toxicity/biological responses in vitro and in vivo. RESULTS: We tested two TiO NPs with different primary sizes (17 and 117 nm) and prepared ad-hoc suspensions composed of small or large agglomerates with similar dispersion medium composition. For in vitro testing, human bronchial epithelial (HBE), colon epithelial (Caco2) and monocytic (THP-1) cell lines were exposed to these suspensions for 24 h and endpoints such as cytotoxicity, total glutathione, epithelial barrier integrity, inflammatory mediators and DNA damage were measured. Large agglomerates of 17 nm TiO induced stronger responses than small agglomerates for glutathione depletion, IL-8 and IL-1β increase, and DNA damage in THP-1, while no effect of agglomeration was observed with 117 nm TiO. In vivo, C57BL/6JRj mice were exposed via oropharyngeal aspiration or oral gavage to TiO suspensions and, after 3 days, biological parameters including cytotoxicity, inflammatory cell recruitment, DNA damage and biopersistence were measured. Mainly, we observed that large agglomerates of 117 nm TiO induced higher pulmonary responses in aspirated mice and blood DNA damage in gavaged mice compared to small agglomerates. CONCLUSION: Agglomeration of TiO NPs influences their toxicity/biological responses and, large agglomerates do not appear less active than small agglomerates. This study provides a deeper insight on the toxicological relevance of NP agglomerates and contributes to the establishment of a toxicologically relevant definition for NMs.
背景:团聚体和聚集体这两个术语在纳米材料(NM)的监管定义中经常被使用,因此鉴于其对健康影响的潜在影响而受到关注。然而,尽管人们强烈认为 NP 的尺寸越小毒性越大,但纳米颗粒(NP)团聚和聚集对毒性的影响知之甚少。因此,目前还没有一个具有毒理学相关性的 NM 定义,这不仅影响风险评估过程,也阻碍了纳米产品的监管。在这项研究中,我们评估了 NP 团聚对其体外和体内毒性/生物学反应的影响。
结果:我们测试了两种具有不同原始粒径(17nm 和 117nm)的 TiO2 NPs,并制备了具有相似分散介质组成的小团聚体或大团聚体的特殊悬浮液。对于体外测试,将人支气管上皮(HBE)、结肠上皮(Caco2)和单核(THP-1)细胞系暴露于这些悬浮液中 24 小时,并测量细胞毒性、总谷胱甘肽、上皮屏障完整性、炎症介质和 DNA 损伤等终点。17nm TiO2 的大团聚体比小团聚体引起更强的谷胱甘肽耗竭、IL-8 和 IL-1β 增加以及 THP-1 的 DNA 损伤反应,而 117nm TiO2 的团聚则没有影响。在体内,C57BL/6JRj 小鼠通过口咽吸入或口服灌胃暴露于 TiO2 悬浮液中,3 天后测量包括细胞毒性、炎症细胞募集、DNA 损伤和生物持久性在内的生物学参数。主要观察到 117nm TiO2 的大团聚体在吸入小鼠中引起更高的肺部反应,在口服灌胃小鼠中引起更高的血液 DNA 损伤。
结论:TiO2 NPs 的团聚影响其毒性/生物学反应,而且大团聚体并不比小团聚体活性更低。这项研究深入了解了 NP 团聚体的毒理学相关性,并为 NM 建立具有毒理学相关性的定义做出了贡献。
Part Fibre Toxicol. 2020-2-26
Part Fibre Toxicol. 2020-1-3
Part Fibre Toxicol. 2013-10-4
Nanomaterials (Basel). 2021-7-9
Nanomaterials (Basel). 2025-6-19
Int J Mol Sci. 2025-1-13
Part Fibre Toxicol. 2024-12-27
J Nanobiotechnology. 2024-10-14
Mater Today Bio. 2024-8-24
Mutagenesis. 2017-1
Nanotoxicology. 2017-2
Ann Occup Hyg. 2016-10