Longhin Eleonora Marta, Rios-Mondragon Ivan, Mariussen Espen, Zheng Congying, Busquets Martí, Gajewicz-Skretna Agnieszka, Hofshagen Ole-Bendik, Bastus Neus Gómez, Puntes Victor Franco, Cimpan Mihaela Roxana, Shaposhnikov Sergey, Dusinska Maria, Rundén-Pran Elise
Health Effects Laboratory, Department of Environmental Chemistry and Health Effects, NILU, 2007, Kjeller, Norway.
Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Årstadveien 19, 5009, Bergen, Norway.
Part Fibre Toxicol. 2024 Dec 27;21(1):54. doi: 10.1186/s12989-024-00615-4.
Hazard and risk assessment of nanomaterials (NMs) face challenges due to, among others, the numerous existing nanoforms, discordant data and conflicting results found in the literature, and specific challenges in the application of strategies such as grouping and read-across, emphasizing the need for New Approach Methodologies (NAMs) to support Next Generation Risk Assessment (NGRA). Here these challenges are addressed in a study that couples physico-chemical characterization with in vitro investigations and in silico similarity analyses for nine nanoforms, having different chemical composition, sizes, aggregation states and shapes. For cytotoxicity assessment, three methods (Alamar Blue, Colony Forming Efficiency, and Electric Cell-Substrate Impedance Sensing) are applied in a cross-validation approach to support NAMs implementation into NGRA.
The results highlight the role of physico-chemical properties in eliciting biological responses. Uptake studies reveal distinct cellular morphological changes. The cytotoxicity assessment shows varying responses among NMs, consistent among the three methods used, while only one nanoform gave a positive response in the genotoxicity assessment performed by comet assay.
The study highlights the potential of in silico models to effectively identify biologically active nanoforms based on their physico-chemical properties, reinforcing previous knowledge on the relevance of certain properties, such as aspect ratio. The potential of implementing in vitro methods into NGRA is underlined, cross-validating three cytotoxicity assessment methods, and showcasing their strength in terms of sensitivity and suitability for the testing of NMs.
纳米材料(NMs)的危害和风险评估面临诸多挑战,其中包括现有的纳米形式众多、文献中数据不一致和结果相互矛盾,以及在应用分组和类推等策略时存在的特定挑战,这凸显了采用新方法学(NAMs)来支持下一代风险评估(NGRA)的必要性。在本研究中,针对九种具有不同化学成分、尺寸、聚集状态和形状的纳米形式,将物理化学表征与体外研究及计算机模拟相似性分析相结合,以应对这些挑战。对于细胞毒性评估,采用了三种方法(alamar蓝法、集落形成效率法和细胞-基质阻抗传感法)进行交叉验证,以支持将NAMs应用于NGRA。
结果突出了物理化学性质在引发生物反应中的作用。摄取研究揭示了明显的细胞形态变化。细胞毒性评估显示,不同纳米材料之间的反应各不相同,在所使用的三种方法中结果一致,而在彗星试验进行的遗传毒性评估中,只有一种纳米形式呈现阳性反应。
该研究突出了计算机模拟模型基于纳米材料的物理化学性质有效识别生物活性纳米形式的潜力,强化了先前关于某些性质(如纵横比)相关性的认识。强调了将体外方法应用于NGRA的潜力,对三种细胞毒性评估方法进行了交叉验证,并展示了它们在检测纳米材料方面的灵敏度和适用性优势。