Heart and Vascular Institute, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania.
Am J Physiol Regul Integr Comp Physiol. 2020 Apr 1;318(4):R772-R780. doi: 10.1152/ajpregu.00338.2019. Epub 2020 Feb 26.
Femoral artery occlusion in rats has been used to study human peripheral artery disease (PAD). Using this animal model, a recent study suggests that increases in levels of tumor necrosis factor-α (TNF-α) and its receptor lead to exaggerated responses of sympathetic nervous activity and arterial blood pressure as metabolically sensitive muscle afferents are activated. Note that voltage-dependent Na subtype Na1.8 channels (Na1.8) are predominately present in chemically sensitive thin fiber sensory nerves. The purpose of this study was to examine the role played by TNF-α in regulating activity of Na1.8 currents in muscle dorsal root ganglion (DRG) neurons of rats with PAD induced by femoral artery occlusion. DRG neurons from control and occluded limbs of rats were labeled by injecting the fluorescent tracer DiI into the hindlimb muscles 5 days before the experiments. A voltage patch-clamp mode was used to examine TTX-resistant (TTX-R) Na currents. Results were as follows: 72 h of femoral artery occlusion increased peak amplitude of TTX-R [1,922 ± 139 pA in occlusion ( = 11 DRG neurons) vs. 1,178 ± 39 pA in control ( = 10), means ± SE; < 0.001 between the 2 groups] and Na1.8 currents [1,461 ± 116 pA in occlusion ( = 11) and 766 ± 48 pA in control ( = 10); < 0.001 between groups] in muscle DRG neurons. TNF-α exposure amplified TTX-R and Na1.8 currents in DRG neurons of occluded muscles in a dose-dependent manner. Notably, the amplification of TTX-R and Na1.8 currents induced by TNF-α was attenuated in DRG neurons with preincubation with respective inhibitors of the intracellular signaling pathways p38-MAPK, JNK, and ERK. In conclusion, our data suggest that Na1.8 is engaged in the role of TNF-α in amplifying muscle afferent inputs as the hindlimb muscles are ischemic; p38-MAPK, JNK, and ERK pathways are likely necessary to mediate the effects of TNF-α.
大鼠股动脉闭塞被用于研究人类外周动脉疾病(PAD)。使用这种动物模型,最近的一项研究表明,肿瘤坏死因子-α(TNF-α)及其受体水平的升高导致交感神经活动和动脉血压的反应过度,因为代谢敏感的肌肉传入纤维被激活。需要注意的是,电压依赖性钠亚型 Na1.8 通道(Na1.8)主要存在于化学敏感的细纤维感觉神经中。本研究的目的是研究 TNF-α在调节股动脉闭塞诱导的 PAD 大鼠背根神经节(DRG)神经元中 Na1.8 电流活性中的作用。在实验前 5 天,通过将荧光示踪剂 DiI 注射到后肢肌肉中,标记来自对照和闭塞肢体的 DRG 神经元。使用电压贴片钳模式检查 TTX 抗性(TTX-R)Na 电流。结果如下:股动脉闭塞 72 h 增加了 TTX-R 的峰值幅度[闭塞时为 1,922±139 pA( = 11 个 DRG 神经元),对照时为 1,178±39 pA( = 10 个); < 0.001 两组之间]和肌肉 DRG 神经元中的 Na1.8 电流[闭塞时为 1,461±116 pA( = 11 个),对照时为 766±48 pA( = 10 个); < 0.001 两组之间]。TNF-α暴露以剂量依赖性方式放大了闭塞肌肉中 DRG 神经元中的 TTX-R 和 Na1.8 电流。值得注意的是,在用 TNF-α的细胞内信号通路 p38-MAPK、JNK 和 ERK 的各自抑制剂预孵育后,TNF-α诱导的 TTX-R 和 Na1.8 电流的放大作用减弱。总之,我们的数据表明,Na1.8 参与了 TNF-α在放大后肢肌肉缺血时肌肉传入输入的作用;p38-MAPK、JNK 和 ERK 通路可能是介导 TNF-α 作用所必需的。