Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut.
Am J Respir Cell Mol Biol. 2020 Jul;63(1):25-35. doi: 10.1165/rcmb.2019-0400OC.
Diisocyanates are well-recognized causes of asthma. However, sensitized workers frequently lack diisocyanate-specific IgE, which complicates diagnosis and suggests the disease involves IgE-independent mechanisms. We used a mouse model of methylene diphenyl diisocyanate (MDI) asthma to identify biological pathways that may contribute to asthma pathogenesis. MDI sensitization and respiratory tract exposure were performed in Balb/c, transgenic B-cell (e.g., IgE)-deficient mice and a genetic background (C57BL/6)-matched strain. Eosinophils in airway fluid were quantitated by flow cytometry. Lung tissue gene expression was assessed using whole-genome mRNA microarrays. Informatic software was used to identify biological pathways affected by respiratory tract exposure and potential targets for disease intervention. Airway eosinophilia and changes (>1.5-fold; value < 0.05) in expression of 192 genes occurred in all three mouse strains tested, with enrichment in chemokines and a pattern associated with alternatively activated monocytes/macrophages. CLCA1 (calcium-activated chloride channel regulator 1) was the most upregulated gene transcript (>100-fold) in all exposed mouse lungs versus controls, followed closely by SLC26A4, another transcript involved in Cl conductance. Crofelemer, a U.S. Food and Drug Administration-approved Cl channel inhibitor, reduced MDI exposure induction of airway eosinophilia, mucus, CLCA1, and other asthma-associated gene transcripts. Expression changes in a core set of genes occurs independent of IgE in a mouse model of chemical-induced airway eosinophilia. In addition to chemokines and alternatively activated monocytes/macrophages, the data suggest a crucial role for Cl channels in diisocyanate asthma pathology and as a possible target for intervention.
异氰酸酯是公认的哮喘病因。然而,致敏工人经常缺乏异氰酸酯特异性 IgE,这使得诊断变得复杂,并表明该疾病涉及 IgE 非依赖性机制。我们使用二异氰酸甲酯(MDI)哮喘的小鼠模型来确定可能有助于哮喘发病机制的生物学途径。在 Balb/c、转基因 B 细胞(如 IgE)缺陷小鼠和遗传背景(C57BL/6)匹配的品系中进行 MDI 致敏和呼吸道暴露。通过流式细胞术定量气道液中的嗜酸性粒细胞。使用全基因组 mRNA 微阵列评估肺组织基因表达。使用信息学软件识别受呼吸道暴露影响的生物学途径和疾病干预的潜在靶点。气道嗜酸性粒细胞增多和 192 个基因表达的变化(>1.5 倍; 值<0.05)发生在所有三种测试的小鼠品系中,趋化因子富集且与替代激活的单核细胞/巨噬细胞相关。CLCA1(钙激活氯离子通道调节剂 1)是所有暴露于小鼠肺中的上调基因转录本(>100 倍)最多的基因,其次是 SLC26A4,另一个涉及 Cl 电导的转录本。Crofelemer 是一种美国食品和药物管理局批准的 Cl 通道抑制剂,可减少 MDI 暴露诱导的气道嗜酸性粒细胞增多、粘液、CLCA1 和其他哮喘相关基因转录本。在化学诱导的气道嗜酸性粒细胞增多的小鼠模型中,一组核心基因的表达变化独立于 IgE。除趋化因子和替代激活的单核细胞/巨噬细胞外,数据还表明 Cl 通道在二异氰酸酯哮喘病理学中具有重要作用,并且可能是干预的潜在靶点。