Suppr超能文献

在大规模国际肠炎沙门氏菌暴发调查的背景下,基于 SNP 和等位基因分型工作流程的一致性。

Concordance of SNP- and allele-based typing workflows in the context of a large-scale international Enteritidis outbreak investigation.

机构信息

National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Control, Bilthoven, The Netherlands.

National Infections Service, Public Health England (PHE), London, England, UK.

出版信息

Microb Genom. 2020 Mar;6(3). doi: 10.1099/mgen.0.000318. Epub 2020 Feb 26.

Abstract

A large European multi-country serovar Enteritidis outbreak associated with Polish eggs was characterized by whole-genome sequencing (WGS)-based analysis, with various European institutes using different analysis workflows to identify isolates potentially related to the outbreak. The objective of our study was to compare the output of six of these different typing workflows (distance matrices of either SNP-based or allele-based workflows) in terms of cluster detection and concordance. To this end, we analysed a set of 180 isolates coming from confirmed and probable outbreak cases, which were representative of the genetic variation within the outbreak, supplemented with 22 unrelated contemporaneous . serovar Enteritidis isolates. Since the definition of a cluster cut-off based on genetic distance requires prior knowledge on the evolutionary processes that govern the bacterial populations in question, we used a variety of hierarchical clustering methods (single, average and complete) and selected the optimal number of clusters based on the consensus of the silhouette, Dunn2, and McClain-Rao internal validation indices. External validation was done by calculating the concordance with the WGS-based case definition (SNP-address) for this outbreak using the Fowlkes-Mallows index. Our analysis indicates that with complete-linkage hierarchical clustering combined with the optimal number of clusters, as defined by three internal validity indices, the six different allele- and SNP-based typing workflows generate clusters with similar compositions. Furthermore, we show that even in the absence of coordinated typing procedures, but by using an unsupervised machine learning methodology for cluster delineation, the various workflows that are currently in use by six European public-health authorities can identify concordant clusters of genetically related . enterica serovar Enteritidis isolates; thus, providing public-health researchers with comparable tools for detection of infectious-disease outbreaks.

摘要

一项涉及多个欧洲国家的肠炎沙门氏菌血清型暴发疫情与波兰鸡蛋有关,其特征是基于全基因组测序(WGS)的分析,欧洲的各个研究所使用不同的分析工作流程来识别可能与暴发疫情有关的分离株。我们的研究目的是比较这六种不同的分型工作流程(基于 SNP 或等位基因的距离矩阵)在聚类检测和一致性方面的输出。为此,我们分析了一组 180 株来自确诊和疑似暴发病例的分离株,这些分离株代表了暴发疫情中的遗传变异,同时还补充了 22 株不相关的同期肠炎沙门氏菌分离株。由于基于遗传距离定义聚类截断值需要事先了解控制相关细菌种群的进化过程,因此我们使用了多种层次聚类方法(单链接、平均链接和完全链接),并根据轮廓、Dunn2 和 McClain-Rao 内部验证指数的共识选择最佳聚类数。通过使用 Fowlkes-Mallows 指数计算与基于 WGS 的暴发疫情病例定义(SNP 地址)的一致性来进行外部验证。我们的分析表明,使用完全链接层次聚类结合三个内部有效性指数定义的最佳聚类数,可以生成具有相似组成的聚类。此外,我们还表明,即使没有协调的分型程序,但通过使用无监督机器学习方法进行聚类划分,目前由六个欧洲公共卫生当局使用的六种不同的等位基因和 SNP 分型工作流程可以识别遗传相关肠炎沙门氏菌血清型的相关聚类;从而为公共卫生研究人员提供了用于检测传染病暴发的可比工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95e3/7200063/3d504e21ab6a/mgen-6-318-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验