Suppr超能文献

用于心脏内感受的多维多特征框架。

A multidimensional and multi-feature framework for cardiac interoception.

机构信息

Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Argentina.

National Scientific and Technical Research Council (CONICET), Argentina; Buenos Aires Physics Institute (IFIBA) and Physics Department, University of Buenos Aires, Buenos Aires, Argentina; Laboratory of Neuropsychology (LNPS), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.

出版信息

Neuroimage. 2020 May 15;212:116677. doi: 10.1016/j.neuroimage.2020.116677. Epub 2020 Feb 23.

Abstract

Interoception (the sensing of inner-body signals) is a multi-faceted construct with major relevance for basic and clinical neuroscience research. However, the neurocognitive signatures of this domain (cutting across behavioral, electrophysiological, and fMRI connectivity levels) are rarely reported in convergent or systematic fashion. Additionally, various controversies in the field might reflect the caveats of standard interoceptive accuracy (IA) indexes, mainly based on heartbeat detection (HBD) tasks. Here we profit from a novel IA index (md) to provide a convergent multidimensional and multi-feature approach to cardiac interoception. We found that outcomes from our IA-md index are associated with -and predicted by- canonical markers of interoception, including the hd-EEG-derived heart-evoked potential (HEP), fMRI functional connectivity within interoceptive hubs (insular, somatosensory, and frontal networks), and socio-emotional skills. Importantly, these associations proved more robust than those involving current IA indexes. Furthermore, this pattern of results persisted when taking into consideration confounding variables (gender, age, years of education, and executive functioning). This work has relevant theoretical and clinical implications concerning the characterization of cardiac interoception and its assessment in heterogeneous samples, such as those composed of neuropsychiatric patients.

摘要

内感受(对体内信号的感知)是一个多方面的结构,与基础和临床神经科学研究有很大的相关性。然而,这一领域的神经认知特征(跨越行为、电生理和 fMRI 连通性水平)很少以收敛或系统的方式报告。此外,该领域的各种争议可能反映了基于心跳检测 (HBD) 任务的标准内感受准确性 (IA) 指标的局限性。在这里,我们利用一种新的 IA 指数 (md) 为心脏内感受提供了一种收敛的多维和多特征方法。我们发现,我们的 IA-md 指数的结果与内感受的典型标志物相关联,并可预测这些标志物,包括源自 hd-EEG 的心脏诱发电位 (HEP)、内感受中枢(岛叶、躯体感觉和额网络)内的 fMRI 功能连通性,以及社会情感技能。重要的是,这些关联比涉及当前 IA 指数的关联更稳健。此外,当考虑混杂变量(性别、年龄、受教育年限和执行功能)时,这种结果模式仍然存在。这项工作对于描述心脏内感受及其在神经精神障碍患者等异质样本中的评估具有重要的理论和临床意义。

相似文献

1
A multidimensional and multi-feature framework for cardiac interoception.用于心脏内感受的多维多特征框架。
Neuroimage. 2020 May 15;212:116677. doi: 10.1016/j.neuroimage.2020.116677. Epub 2020 Feb 23.
2
Multimodal neurocognitive markers of interoceptive tuning in smoked cocaine.吸烟可卡因者的内脏知觉调节的多模态神经认知标志物
Neuropsychopharmacology. 2019 Jul;44(8):1425-1434. doi: 10.1038/s41386-019-0370-3. Epub 2019 Mar 13.
4
Altered neural signatures of interoception in multiple sclerosis.多发性硬化症中介导感觉的神经特征改变。
Hum Brain Mapp. 2018 Dec;39(12):4743-4754. doi: 10.1002/hbm.24319. Epub 2018 Aug 4.

引用本文的文献

本文引用的文献

6
Visceral Signals Shape Brain Dynamics and Cognition.内脏信号塑造大脑动态和认知。
Trends Cogn Sci. 2019 Jun;23(6):488-509. doi: 10.1016/j.tics.2019.03.007. Epub 2019 Apr 30.
7
Multimodal neurocognitive markers of interoceptive tuning in smoked cocaine.吸烟可卡因者的内脏知觉调节的多模态神经认知标志物
Neuropsychopharmacology. 2019 Jul;44(8):1425-1434. doi: 10.1038/s41386-019-0370-3. Epub 2019 Mar 13.
8
Focus of attention modulates the heartbeat evoked potential.注意力焦点调节心跳诱发电位。
Neuroimage. 2019 Feb 1;186:595-606. doi: 10.1016/j.neuroimage.2018.11.037. Epub 2018 Nov 22.
10
Altered neural signatures of interoception in multiple sclerosis.多发性硬化症中介导感觉的神经特征改变。
Hum Brain Mapp. 2018 Dec;39(12):4743-4754. doi: 10.1002/hbm.24319. Epub 2018 Aug 4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验