Suppr超能文献

基于人工神经网络的乳腺摄影中腺体剂量的估算。

Estimation of glandular dose in mammography based on artificial neural networks.

机构信息

Instituto de Física 'Gleb Wataghin', Universidade Estadual de Campinas, 13083-859, Campinas, Brazil.

出版信息

Phys Med Biol. 2020 May 11;65(9):095009. doi: 10.1088/1361-6560/ab7a6d.

Abstract

This work proposes using artificial neural networks (ANNs) for the regression of the dosimetric quantities employed in mammography. The data were generated by Monte Carlo (MC) simulations using a modified and validated version of the PENELOPE (v. 2014) + penEasy (v. 2015) code. A breast model of a homogeneous mixture of adipose and glandular tissue was adopted. The ANNs were constructed using the Keras and scikit-learn libraries for mean glandular dose (MGD) and air kerma (K ) regressions, respectively. In total, seven parameters were considered, including the incident photon energies (from 8.25 to 48.75 keV), breast geometry, breast glandularity and K acquisition geometry. Two ensembles of five ANNs each were formed to calculate MGD and K . The normalized glandular dose coefficients (DgN) were calculated using the ratio of the ensemble outputs for MGD and K . Polyenergetic DgN values were calculated by weighting monoenergetic values by the spectrum bin probabilities. The results indicate a very good ANN prediction performance when compared to the validation data, with median errors on the order of the average simulation uncertainties (≈ 0.2%). Moreover, the predicted DgN values are in good agreement compared with previously published works, with mean (maximum) differences up to 2.2% (9.4%). Therefore, it is shown that ANNs could be a complementary or alternative technique to tables, parametric equations and polynomial fits to estimate DgN values obtained via MC simulations.

摘要

本工作提出使用人工神经网络 (ANNs) 对乳腺摄影中使用的剂量学量进行回归。数据是通过使用修改和验证的 PENELOPE (v. 2014) + penEasy (v. 2015) 代码的蒙特卡罗 (MC) 模拟生成的。采用了一种均匀混合脂肪和腺体组织的乳房模型。使用 Keras 和 scikit-learn 库分别构建了用于平均腺体剂量 (MGD) 和空气比释动能 (K) 回归的 ANNs。总共考虑了七个参数,包括入射光子能量(从 8.25 到 48.75 keV)、乳房几何形状、乳房腺体和 K 采集几何形状。形成了两组各五个的 ANN 来计算 MGD 和 K。使用 MGD 和 K 的集合输出比计算归一化腺体剂量系数 (DgN)。通过用谱-bin 概率加权单能值来计算多能 DgN 值。与验证数据相比,ANN 的预测性能非常好,中位数误差在平均模拟不确定性(≈0.2%)的范围内。此外,与之前发表的工作相比,预测的 DgN 值具有很好的一致性,平均(最大)差异高达 2.2%(9.4%)。因此,表明 ANNs 可以作为表格、参数方程和多项式拟合的补充或替代技术,用于估计通过 MC 模拟获得的 DgN 值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验