Castaldo Rossana, Pane Katia, Nicolai Emanuele, Salvatore Marco, Franzese Monica
IRCCS SDN, Via E. Gianturco, 113, 80143 Naples, Italy.
Cancers (Basel). 2020 Feb 24;12(2):518. doi: 10.3390/cancers12020518.
In breast cancer studies, combining quantitative radiomic with genomic signatures can help identifying and characterizing radiogenomic phenotypes, in function of molecular receptor status. Biomedical imaging processing lacks standards in radiomic feature normalization methods and neglecting feature normalization can highly bias the overall analysis. This study evaluates the effect of several normalization techniques to predict four clinical phenotypes such as estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), and triple negative (TN) status, by quantitative features. The Cancer Imaging Archive (TCIA) radiomic features from 91 T1-weighted Dynamic Contrast Enhancement MRI of invasive breast cancers were investigated in association with breast invasive carcinoma miRNA expression profiling from the Cancer Genome Atlas (TCGA). Three advanced machine learning techniques (Support Vector Machine, Random Forest, and Naïve Bayesian) were investigated to distinguish between molecular prognostic indicators and achieved an area under the ROC curve (AUC) values of 86%, 93%, 91%, and 91% for the prediction of ER+ versus ER-, PR+ versus PR-, HER2+ versus HER2-, and triple-negative, respectively. In conclusion, radiomic features enable to discriminate major breast cancer molecular subtypes and may yield a potential imaging biomarker for advancing precision medicine.
在乳腺癌研究中,将定量放射组学与基因组特征相结合,有助于根据分子受体状态识别和表征放射基因组表型。生物医学成像处理在放射组学特征归一化方法方面缺乏标准,而忽视特征归一化会严重影响整体分析的准确性。本研究通过定量特征评估了几种归一化技术对预测四种临床表型(如雌激素受体(ER)、孕激素受体(PR)、人表皮生长因子受体2(HER2)和三阴性(TN)状态)的效果。研究了来自癌症影像存档(TCIA)的91例浸润性乳腺癌T1加权动态对比增强MRI的放射组学特征,并将其与来自癌症基因组图谱(TCGA)的乳腺浸润性癌miRNA表达谱相关联。研究了三种先进的机器学习技术(支持向量机、随机森林和朴素贝叶斯)来区分分子预后指标,在预测ER+与ER-、PR+与PR-、HER2+与HER2-以及三阴性状态时,受试者工作特征曲线下面积(AUC)值分别达到了86%、93%、91%和91%。总之,放射组学特征能够区分主要的乳腺癌分子亚型,并可能产生一种潜在的成像生物标志物,以推动精准医学的发展。