Sanz-Rodrigo Javier, Olivier Yoann, Sancho-García Juan-Carlos
Department of Physical Chemistry, University of Alicante, E-03080 Alicante, Spain.
Unité de Chimie Physique Théorique et Structurale & Laboratoire de Physique du Solid, Namur Institute of Structured Matter, Université de Namur, B-5000 Namur, Belgium.
Molecules. 2020 Feb 24;25(4):1006. doi: 10.3390/molecules25041006.
In this paper we describe the mechanism of light emission through thermally activated delayed fluorescence (TADF)-a process able to ideally achieve 100% quantum efficiencies upon fully harvesting the energy of triplet excitons, and thus minimizing the energy loss of common (i.e., fluorescence and phosphorescence) luminescence processes. If successful, this technology could be exploited for the manufacture of more efficient organic light-emitting diodes (OLEDs) made of only light elements for multiple daily applications, thus contributing to the rise of a sustainable electronic industry and energy savings worldwide. Computational and theoretical studies have fostered the design of these all-organic molecular emitters by disclosing helpful structure-property relationships and/or analyzing the physical origin of this mechanism. However, as the field advances further, some limitations have also appeared, particularly affecting TD-DFT calculations, which have prompted the use of a variety of methods at the molecular scale in recent years. Herein we try to provide a guide for beginners, after summarizing the current state-of-the-art of the most employed theoretical methods focusing on the singlet-triplet energy difference, with the additional aim of motivating complementary studies revealing the stronger and weaker aspects of computational modelling for this cutting-edge technology.
在本文中,我们描述了通过热激活延迟荧光(TADF)发光的机制——这一过程在充分捕获三重态激子的能量时理论上能够实现100%的量子效率,从而将常见(即荧光和磷光)发光过程的能量损失降至最低。如果成功,这项技术可用于制造仅由轻元素制成的、适用于多种日常应用的更高效有机发光二极管(OLED),从而推动可持续电子产业的发展并在全球范围内实现节能。计算和理论研究通过揭示有用的结构-性质关系和/或分析该机制的物理起源,推动了这些全有机分子发光体的设计。然而,随着该领域的进一步发展,一些局限性也出现了,特别是影响了含时密度泛函理论(TD-DFT)计算,这促使近年来在分子尺度上使用各种方法。在此,我们在总结当前最常用的聚焦于单重态-三重态能量差的理论方法的最新进展之后,尝试为初学者提供一份指南,另外的目的是激发补充性研究,揭示这种前沿技术计算建模的优势和不足。