Suppr超能文献

人脚僵硬度与横弓演化。

Stiffness of the human foot and evolution of the transverse arch.

机构信息

Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT, USA.

School of Science, Aalto University, Espoo, Finland.

出版信息

Nature. 2020 Mar;579(7797):97-100. doi: 10.1038/s41586-020-2053-y. Epub 2020 Feb 26.

Abstract

The stiff human foot enables an efficient push-off when walking or running, and was critical for the evolution of bipedalism. The uniquely arched morphology of the human midfoot is thought to stiffen it, whereas other primates have flat feet that bend severely in the midfoot. However, the relationship between midfoot geometry and stiffness remains debated in foot biomechanics, podiatry and palaeontology. These debates centre on the medial longitudinal arch and have not considered whether stiffness is affected by the second, transverse tarsal arch of the human foot. Here we show that the transverse tarsal arch, acting through the inter-metatarsal tissues, is responsible for more than 40% of the longitudinal stiffness of the foot. The underlying principle resembles a floppy currency note that stiffens considerably when it curls transversally. We derive a dimensionless curvature parameter that governs the stiffness contribution of the transverse tarsal arch, demonstrate its predictive power using mechanical models of the foot and find its skeletal correlate in hominin feet. In the foot, the material properties of the inter-metatarsal tissues and the mobility of the metatarsals may additionally influence the longitudinal stiffness of the foot and thus the curvature-stiffness relationship of the transverse tarsal arch. By analysing fossils, we track the evolution of the curvature parameter among extinct hominins and show that a human-like transverse arch was a key step in the evolution of human bipedalism that predates the genus Homo by at least 1.5 million years. This renewed understanding of the foot may improve the clinical treatment of flatfoot disorders, the design of robotic feet and the study of foot function in locomotion.

摘要

僵硬的人类足部在行走或跑步时能够有效地推动身体,这对于两足动物的进化至关重要。人类中足独特的拱形形态被认为使其变得僵硬,而其他灵长类动物的中足则严重弯曲。然而,在足部生物力学、足病学和古生物学中,中足几何形状和刚度之间的关系仍然存在争议。这些争论集中在内侧纵弓上,而没有考虑到人类足部的第二横弓——跗横弓是否会影响刚度。在这里,我们表明跗横弓通过跗骨间组织发挥作用,对足部的纵向刚度的贡献超过 40%。其背后的原理类似于一张柔软的货币票据,当它横向卷曲时会明显变硬。我们得出了一个控制跗横弓刚度贡献的无量纲曲率参数,使用足部力学模型证明了其预测能力,并在人类祖先的足部中找到了其骨骼相关性。在足部,跗骨间组织的材料特性和跖骨的活动性可能会进一步影响足部的纵向刚度,从而影响跗横弓的曲率-刚度关系。通过分析化石,我们追踪了已灭绝的人类祖先中曲率参数的演变,并表明人类样的跗横弓是人类两足动物进化的关键一步,比人类属的出现至少早了 150 万年。对足部的这种新认识可能会改善平足症的临床治疗效果,改善机器人足部的设计,并有助于研究运动中的足部功能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验