Suppr超能文献

通过融合基因、miRNA 和通路的多关系数据发现协同调控通路。

Cooperative driver pathway discovery via fusion of multi-relational data of genes, miRNAs and pathways.

机构信息

Professor of the School of Software, Shandong University.

Department of Computer Science, George Mason University.

出版信息

Brief Bioinform. 2021 Mar 22;22(2):1984-1999. doi: 10.1093/bib/bbz167.

Abstract

Discovering driver pathways is an essential step to uncover the molecular mechanism underlying cancer and to explore precise treatments for cancer patients. However, due to the difficulties of mapping genes to pathways and the limited knowledge about pathway interactions, most previous work focus on identifying individual pathways. In practice, two (or even more) pathways interplay and often cooperatively trigger cancer. In this study, we proposed a new approach called CDPathway to discover cooperative driver pathways. First, CDPathway introduces a driver impact quantification function to quantify the driver weight of each gene. CDPathway assumes that genes with larger weights contribute more to the occurrence of the target disease and identifies them as candidate driver genes. Next, it constructs a heterogeneous network composed of genes, miRNAs and pathways nodes based on the known intra(inter)-relations between them and assigns the quantified driver weights to gene-pathway and gene-miRNA relational edges. To transfer driver impacts of genes to pathway interaction pairs, CDPathway collaboratively factorizes the weighted adjacency matrices of the heterogeneous network to explore the latent relations between genes, miRNAs and pathways. After this, it reconstructs the pathway interaction network and identifies the pathway pairs with maximal interactive and driver weights as cooperative driver pathways. Experimental results on the breast, uterine corpus endometrial carcinoma and ovarian cancer data from The Cancer Genome Atlas show that CDPathway can effectively identify candidate driver genes [area under the receiver operating characteristic curve (AUROC) of $\geq $0.9] and reconstruct the pathway interaction network (AUROC of>0.9), and it uncovers much more known (potential) driver genes than other competitive methods. In addition, CDPathway identifies 150% more driver pathways and 60% more potential cooperative driver pathways than the competing methods. The code of CDPathway is available at http://mlda.swu.edu.cn/codes.php?name=CDPathway.

摘要

发现驱动途径是揭示癌症分子机制和探索癌症患者精确治疗方法的关键步骤。然而,由于将基因映射到途径以及对途径相互作用的了解有限,大多数先前的工作都集中于识别单个途径。实际上,两种(甚至更多)途径相互作用,并且经常协同引发癌症。在这项研究中,我们提出了一种称为 CDPathway 的新方法来发现协同驱动途径。首先,CDPathway 引入了一个驱动影响量化函数来量化每个基因的驱动权重。CDPathway 假设权重较大的基因对目标疾病的发生贡献更大,并将其识别为候选驱动基因。接下来,它基于基因、miRNA 和途径节点之间的已知内在(相互)关系构建了一个由基因、miRNA 和途径节点组成的异构网络,并将量化的驱动权重分配给基因-途径和基因-miRNA 关系边。为了将基因的驱动影响传递给途径相互作用对,CDPathway 协同分解异构网络的加权邻接矩阵,以探索基因、miRNA 和途径之间的潜在关系。之后,它重建途径相互作用网络,并识别具有最大相互作用和驱动权重的途径对作为协同驱动途径。来自癌症基因组图谱的乳腺癌、子宫体子宫内膜癌和卵巢癌数据的实验结果表明,CDPathway 可以有效地识别候选驱动基因[接收者操作特征曲线下的面积(AUROC)$\geq$0.9]和重建途径相互作用网络(AUROC$\gt$0.9),并比其他竞争方法发现更多已知(潜在)驱动基因。此外,CDPathway 比竞争方法识别出 150%的驱动途径和 60%的潜在协同驱动途径。CDPathway 的代码可在 http://mlda.swu.edu.cn/codes.php?name=CDPathway 上获得。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验