Suppr超能文献

通过由癌症标志ERBB驱动的机器学习方法发现女性特异性癌症潜在的常见miRNA特征

Discovering Common miRNA Signatures Underlying Female-Specific Cancers via a Machine Learning Approach Driven by the Cancer Hallmark ERBB.

作者信息

Pane Katia, Zanfardino Mario, Grimaldi Anna Maria, Baldassarre Gustavo, Salvatore Marco, Incoronato Mariarosaria, Franzese Monica

机构信息

IRCCS Synlab SDN, 80143 Naples, Italy.

Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, 33081 Aviano, Italy.

出版信息

Biomedicines. 2022 Jun 2;10(6):1306. doi: 10.3390/biomedicines10061306.

Abstract

Big data processing, using omics data integration and machine learning (ML) methods, drive efforts to discover diagnostic and prognostic biomarkers for clinical decision making. Previously, we used the TCGA database for gene expression profiling of breast, ovary, and endometrial cancers, and identified a top-scoring network centered on the gene, which plays a crucial role in carcinogenesis in the three estrogen-dependent tumors. Here, we focused on microRNA expression signature similarity, asking whether they could target the family. We applied an ML approach on integrated TCGA miRNA profiling of breast, endometrium, and ovarian cancer to identify common miRNA signatures differentiating tumor and normal conditions. Using the ML-based algorithm and the miRTarBase database, we found 205 features and 158 miRNAs targeting isoforms, respectively. By merging the results of both databases and ranking each feature according to the weighted Support Vector Machine model, we prioritized 42 features, with accuracy (0.98), AUC (0.93-95% CI 0.917-0.94), sensitivity (0.85), and specificity (0.99), indicating their diagnostic capability to discriminate between the two conditions. In vitro validations by qRT-PCR experiments, using model and parental cell lines for each tumor type showed that five miRNAs (hsa-mir-323a-3p, hsa-mir-323b-3p, hsa-mir-331-3p, hsa-mir-381-3p, and hsa-mir-1301-3p) had expressed trend concordance between breast, ovarian, and endometrium cancer cell lines compared with normal lines, confirming our in silico predictions. This shows that an integrated computational approach combined with biological knowledge, could identify expression signatures as potential diagnostic biomarkers common to multiple tumors.

摘要

利用组学数据整合和机器学习(ML)方法进行的大数据处理,推动了发现用于临床决策的诊断和预后生物标志物的研究工作。此前,我们使用TCGA数据库对乳腺癌、卵巢癌和子宫内膜癌进行基因表达谱分析,并确定了一个以基因 为中心的高分网络,该基因在三种雌激素依赖性肿瘤的致癌过程中起着关键作用。在此,我们聚焦于微小RNA表达特征的相似性,探究它们是否能够靶向 家族。我们对整合后的TCGA乳腺癌、子宫内膜癌和卵巢癌微小RNA谱应用ML方法,以识别区分肿瘤和正常状态的常见微小RNA特征。使用基于ML的算法和miRTarBase数据库,我们分别发现了205个特征和158个靶向 异构体的微小RNA。通过合并两个数据库的结果,并根据加权支持向量机模型对每个特征进行排名,我们对42个特征进行了优先排序,其准确率为(0.98),曲线下面积为(0.93 - 95%置信区间0.917 - 0.94),灵敏度为(0.85),特异性为(0.99),表明它们具有区分这两种状态的诊断能力。使用每种肿瘤类型的模型细胞系和亲本细胞系进行的qRT-PCR实验体外验证表明,与正常细胞系相比,五种微小RNA(hsa-mir-323a-3p、hsa-mir-323b-3p、hsa-mir-331-3p、hsa-mir-381-3p和hsa-mir-1301-3p)在乳腺癌、卵巢癌和子宫内膜癌细胞系中的表达趋势一致,证实了我们的计算机模拟预测。这表明,结合生物学知识的综合计算方法能够识别作为多种肿瘤共有的潜在诊断生物标志物的表达特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3009/9219956/9b69188e0b58/biomedicines-10-01306-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验