Upadhyay M V, Capek J, Van Petegem S, Lebensohn R A, Van Swygenhoven H
1Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland.
2Department of Physics of Materials, Charles University, 12116 Prague, Czech Republic.
JOM (1989). 2017;69(5):839-847. doi: 10.1007/s11837-017-2299-5. Epub 2017 Mar 10.
Predicting the macroscopic and microscopic mechanical response of metals and alloys subjected to complex loading conditions necessarily requires a synergistic combination of multiscale material models and characterization techniques. This article focuses on the use of a multiscale approach to study the difference between intergranular lattice strain evolution for various grain families measured during in situ neutron diffraction on dog bone and cruciform 316L samples. At the macroscale, finite element simulations capture the complex coupling between applied forces and gauge stresses in cruciform geometries. The predicted gauge stresses are used as macroscopic boundary conditions to drive a mesoscale full-field elasto-viscoplastic fast Fourier transform crystal plasticity model. The results highlight the role of grain neighborhood on the intergranular strain evolution under uniaxial and equibiaxial loading.
预测金属和合金在复杂加载条件下的宏观和微观力学响应,必然需要多尺度材料模型和表征技术的协同结合。本文重点研究使用多尺度方法来研究在狗骨形和十字形316L样品的原位中子衍射过程中测量的不同晶粒族的晶间晶格应变演化之间的差异。在宏观尺度上,有限元模拟捕捉十字形几何形状中施加力与应变片应力之间的复杂耦合。预测的应变片应力用作宏观边界条件,以驱动中尺度全场弹粘塑性快速傅里叶变换晶体塑性模型。结果突出了晶粒邻域在单轴和双轴加载下对晶间应变演化的作用。