Suppr超能文献

粉末床熔融增材制造金属的微观结构信息力学建模的计算方法综述

A Review of Computational Approaches to the Microstructure-Informed Mechanical Modelling of Metals Produced by Powder Bed Fusion Additive Manufacturing.

作者信息

Zinovieva Olga, Romanova Varvara, Dymnich Ekaterina, Zinoviev Aleksandr, Balokhonov Ruslan

机构信息

School of Engineering and Technology, University of New South Wales Canberra, Campbell, ACT 2612, Australia.

Institute of Strength Physics and Materials Science, 634055 Tomsk, Russia.

出版信息

Materials (Basel). 2023 Sep 28;16(19):6459. doi: 10.3390/ma16196459.

Abstract

In the rapidly evolving field of additive manufacturing (AM), the predictability of part properties is still challenging due to the inherent multiphysics complexity of the technology. This results in time-consuming and costly experimental guess-and-check approaches for manufacturing each individual design. Through synthesising advancements in the field, this review argues that numerical modelling is instrumental in mitigating these challenges by working in tandem with experimental studies. Unique hierarchical microstructures induced by extreme AM process conditions- including melt pool patterns, grains, cellular-dendritic substructures, and precipitates-affect the final part properties. Therefore, the development of microstructure-informed mechanical models becomes vital. Our review of numerical studies explores various modelling approaches that consider the microstructural features explicitly and offers insights into multiscale stress-strain analysis across diverse materials fabricated by powder bed fusion AM. The literature indicates a growing consensus on the key role of multiscale integrated process-structure-property-performance (PSPP) modelling in capturing the complexity of AM-produced materials. Current models, though increasingly sophisticated, still tend to relate only two elements of the PSPP chain while often focusing on a single scale. This emphasises the need for integrated PSPP approaches validated by a solid experimental base. The PSPP paradigm for AM, while promising as a concept, is still in its infantry, confronting multifaceted challenges that require in-depth, multidisciplinary expertise. These challenges range from accounting for multiphysics phenomena (e.g., advanced laser-material interaction) and their interplay (thermo-mechanical and microstructural evolution for simulating Type II residual stresses), accurately defined assumptions (e.g., flat molten surface during AM or purely epitaxial solidification), and correctly estimated boundary conditions for each element of the PSPP chain up to the need to balance the model's complexity and detalisation in terms of both multiphysics and discretisation with efficient multitrack and multilayer simulations. Efforts in bridging these gaps would not only improve predictability but also expedite the development and certification of new AM materials.

摘要

在快速发展的增材制造(AM)领域,由于该技术固有的多物理场复杂性,零件性能的可预测性仍然具有挑战性。这导致制造每个单独设计都需要耗时且成本高昂的实验性试错方法。通过综合该领域的进展,本综述认为数值模拟通过与实验研究协同工作,有助于缓解这些挑战。极端增材制造工艺条件所诱导的独特层次微观结构——包括熔池模式、晶粒、胞状枝晶亚结构和析出物——会影响最终零件性能。因此,开发基于微观结构的力学模型变得至关重要。我们对数值研究的综述探讨了各种明确考虑微观结构特征的建模方法,并深入了解了通过粉末床熔融增材制造制备的各种材料的多尺度应力 - 应变分析。文献表明,对于多尺度集成工艺 - 结构 - 性能 - 表现(PSPP)建模在捕捉增材制造材料复杂性方面的关键作用,人们的共识日益增加。当前的模型虽然越来越复杂,但仍然倾向于仅关联PSPP链中的两个要素,并且通常只关注单一尺度。这凸显了需要有坚实实验基础验证的集成PSPP方法。增材制造的PSPP范式虽然作为一个概念很有前景,但仍处于起步阶段,面临着多方面的挑战,需要深入的多学科专业知识。这些挑战包括考虑多物理场现象(例如,先进的激光与材料相互作用)及其相互作用(用于模拟II型残余应力的热 - 机械和微观结构演变)、准确定义假设(例如,增材制造过程中的平坦熔融表面或纯外延凝固),以及为PSPP链的每个要素正确估计边界条件,直至需要在多物理场和离散化方面平衡模型的复杂性和细节,同时进行高效的多道次和多层模拟。弥合这些差距的努力不仅将提高可预测性,还将加快新型增材制造材料的开发和认证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bee/10573704/1071db9bd447/materials-16-06459-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验