Suppr超能文献

用于预测活性药物成分(API)溶解度以指导固液分离器设计的模型评估。

Model evaluation for the prediction of solubility of active pharmaceutical ingredients (APIs) to guide solid-liquid separator design.

作者信息

Moodley Kuveneshan, Rarey Jürgen, Ramjugernath Deresh

机构信息

Thermodynamics Research Unit, School of Engineering, University of KwaZulu-Natal, Howard College Campus, Durban 4041, South Africa.

Industrial Chemistry, Carl von Ossietzky University Oldenburg, Oldenburg 26111, Germany.

出版信息

Asian J Pharm Sci. 2018 May;13(3):265-278. doi: 10.1016/j.ajps.2017.12.004. Epub 2017 Dec 8.

Abstract

The assumptions and models for solubility modelling or prediction in systems using non-polar solvents, or water and complex triterpene and other active pharmaceutical ingredients as solutes aren't well studied. Furthermore, the assumptions concerning heat capacity effects (negligibility, experimental values or approximations) are explored, using non-polar solvents (benzene), or water as reference solvents, for systems with solute melting points in the range of 306-528 K and molecular weights in the range of 90-442 g/mol. New empirical estimation methods for the of APIs are presented which correlate the solute molecular masses and van der Waals surface areas with . Separate empirical parameters were required for oxygenated and non-oxygenated solutes. Subsequently, the predictive capabilities of the various approaches to solubility modelling for complex pharmaceuticals, for which data is limited, are analysed. The solute selection is based on a principal component analysis, considering molecular weights, fusion temperatures, and solubilities in a non-polar solvent, alcohol, and water, where data was available. New NRTL-SAC parameters were determined for selected steroids, by regression. The original UNIFAC, modified UNIFAC (Dortmund), COSMO-RS (OL), and COSMO-SAC activity coefficient predictions are then conducted, based on the availability of group constants and sigma profiles. These are undertaken to assess the predictive capabilities of these models when each assumption concerning heat capacity is employed. The predictive qualities of the models are assessed, based on the mean square deviation and provide guidelines for model selection, and assumptions concerning phase equilibrium, when designing solid-liquid separators for the pharmaceutical industry on process simulation software. The most suitable assumption regarding was found to be system specific, with modified UNIFAC (Dortmund) performing well in benzene as a solvent system, while original UNIFAC performs better in aqueous systems. Original UNIFAC outperforms other predictive models tested in the triterpene/steroidal systems, with no significant influence from the assumptions regarding .

摘要

在使用非极性溶剂,或水以及复杂三萜类化合物和其他活性药物成分作为溶质的体系中,溶解度建模或预测的假设和模型尚未得到充分研究。此外,以非极性溶剂(苯)或水作为参考溶剂,对溶质熔点在306 - 528 K范围内且分子量在90 - 442 g/mol范围内的体系,探讨了关于热容效应的假设(可忽略性、实验值或近似值)。提出了新的活性药物成分溶解度的经验估计方法,该方法将溶质分子量和范德华表面积与溶解度相关联。含氧和不含氧溶质需要单独的经验参数。随后,分析了各种溶解度建模方法对数据有限的复杂药物的预测能力。溶质选择基于主成分分析,考虑了分子量、熔融温度以及在非极性溶剂、醇和水中的溶解度(若有可用数据)。通过回归确定了选定类固醇的新NRTL - SAC参数。然后,基于基团常数和西格玛分布的可用性,进行了原始UNIFAC、修正UNIFAC(多特蒙德)、COSMO - RS(OL)和COSMO - SAC活度系数预测。这样做是为了评估在采用关于热容的每个假设时这些模型的预测能力。基于均方偏差评估模型的预测质量,并为模型选择以及在过程模拟软件上为制药行业设计固液分离器时关于相平衡的假设提供指导。发现关于热容的最合适假设因系统而异,修正UNIFAC(多特蒙德)在苯作为溶剂体系中表现良好,而原始UNIFAC在水性体系中表现更好。在三萜类/甾体体系中,原始UNIFAC优于其他测试的预测模型,关于热容的假设对其没有显著影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b1c/7032238/b108beb04090/fx1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验