Suppr超能文献

两种逆流和离心分配色谱溶剂筛选计算方法的比较。

Comparison of two computational methods for solvent screening in countercurrent and centrifugal partition chromatography.

机构信息

Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.

Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; UTFPR - Departamento de Engenharia Química, Universidade Tecnológica Federal do Paraná, 84016-210 Ponta Grossa, Brazil.

出版信息

J Chromatogr A. 2022 Mar 15;1666:462859. doi: 10.1016/j.chroma.2022.462859. Epub 2022 Jan 29.

Abstract

Countercurrent and centrifugal partition chromatography are techniques applied in the separation and isolation of compounds from natural extracts. One of the key design parameters of these processes is the selection of the biphasic solvent system that provides for the adequate partitioning of the solutes. To address this challenging task, the fully predictive Conductor-like Screening Model for Real Solvents (COSMO-RS) and the semi-predictive Non-Random Two-Liquid Segment Activity Coefficient (NRTL-SAC) model were applied to estimate the partition coefficients (K) of four model phenolic compounds (vanillin, ferulic acid, (S)-hesperetin and quercetin) in different solvent systems. Complementing the experimental data collected in the literature, partition coefficients of each solute in binary, or quaternary, solvent systems were measured at 298.2 K. Higher deviations from the experimental data were obtained using the predictive COSMO-RS model, with an average RMSD (root-mean-square deviation) in log(K) of 1.17 of all four solutes (61 data points), providing a satisfactory quantitative description only for the systems containing vanillin (RSMD = 0.57). For the NRTL-SAC model, the molecular parameters of the solutes were initially calculated by correlating a set of K and solubility (x, in mole fraction) data (16 partition coefficients and 44 solubility data points), for which average RMSD values of 0.07 and 0.41 were obtained in log(K) and log(x), respectively. The predictions of the remaining log(K) data (45 partition coefficients) resulted in an average RMSD of 0.43, suggesting that the NRTL-SAC model was a more reliable quantitative solvent screening tool. Depending on the amount of available solubility and partition data, both models can be valuable alternatives in the preliminary stages of solvent screening destined to select the optimal mobile and stationary phases for a given separation.

摘要

逆流和离心分配色谱是应用于从天然提取物中分离和分离化合物的技术。这些过程的关键设计参数之一是选择两相溶剂系统,该系统为溶质的充分分配提供条件。为了解决这个具有挑战性的任务,应用了完全预测的导体相似性筛选模型用于真实溶剂(COSMO-RS)和半预测的非随机两液体段活度系数(NRTL-SAC)模型来估计四个模型酚类化合物(香草醛,阿魏酸,(S)-橙皮苷和槲皮素)在不同溶剂系统中的分配系数(K)。补充文献中收集的实验数据,在 298.2 K 下测量了每种溶质在二元或四元溶剂系统中的分配系数。使用预测性 COSMO-RS 模型获得了与实验数据更高的偏差,所有四种溶质(61 个数据点)的 log(K) 的平均 RMSD(均方根偏差)为 1.17,仅对含有香草醛的系统提供了令人满意的定量描述(RSMD = 0.57)。对于 NRTL-SAC 模型,最初通过关联一组 K 和溶解度(x,以摩尔分数表示)数据(16 个分配系数和 44 个溶解度数据点)来计算溶质的分子参数,分别得到 log(K) 和 log(x)的平均 RMSD 值为 0.07 和 0.41。对剩余的 log(K)数据(45 个分配系数)的预测得到的平均 RMSD 为 0.43,表明 NRTL-SAC 模型是一种更可靠的定量溶剂筛选工具。根据可用溶解度和分配数据的数量,两种模型都可以在溶剂筛选的初步阶段作为有价值的替代方案,目的是选择给定分离的最佳流动相和固定相。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验