Suppr超能文献

基于深度学习的骨盆骨折患者腹膜外血肿体积的定量可视化和测量:在个性化预测和决策支持中的潜在作用。

Deep learning-based quantitative visualization and measurement of extraperitoneal hematoma volumes in patients with pelvic fractures: Potential role in personalized forecasting and decision support.

机构信息

From the Emergency and Trauma Imaging, Department of Diagnostic Radiology and Nuclear Medicine (D.D.), R Adams Cowley Shock Trauma Center, School of Medicine, University of Maryland; Department of Computer Science (Y.Z.), Center for Cognition Vision and Learning, Johns Hopkins University; Diagnostic Radiology and Nuclear Medicine (T.C., G.L.), University of Maryland School of Medicine; Department of Computer Science (A.L.Y.), Center for Cognition Vision and Learning, Johns Hopkins University; Vascular Surgery (A.M., J.J.M.), R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland.

出版信息

J Trauma Acute Care Surg. 2020 Mar;88(3):425-433. doi: 10.1097/TA.0000000000002566.

Abstract

INTRODUCTION

Admission computed tomography (CT) is a widely used diagnostic tool for patients with pelvic fractures. In this pilot study, we hypothesized that pelvic hematoma volumes derived using a rapid automated deep learning-based quantitative visualization and measurement algorithm predict interventions and outcomes including (a) need for angioembolization (AE), pelvic packing (PP), or massive transfusion (MT), and (b) in-hospital mortality.

METHODS

We performed a single-institution retrospective analysis of 253 patients with bleeding pelvic fractures who underwent admission abdominopelvic trauma CT between 2008 and 2017. Included patients had hematoma volumes of 30 mL or greater, were 18 years and older, and underwent contrast-enhanced CT before surgical or angiographic intervention. Automated pelvic hematoma volume measurements were previously derived using a deep-learning quantitative visualization and measurement algorithm through cross-validation. A composite dependent variable of need for MT, AE, or PP was used as the primary endpoint. The added utility of hematoma volume was assessed by comparing the performance of multivariable models with and without hematoma volume as a predictor. Areas under the receiver operating characteristic curve (AUCs) and sensitivities, specificities, and predictive values were determined at clinically relevant thresholds. Adjusted odds ratios of automated pelvic hematoma volumes at 200 mL increments were derived.

RESULTS

Median age was 47 years (interquartile range, 29-61), and 70% of patients were male. Median Injury Severity Score was 22 (14-36). Ninety-four percent of patients had injuries in other body regions, and 73% had polytrauma (Injury Severity Score, ≥16). Thirty-three percent had Tile/Orthopedic Trauma Association type B, and 24% had type C pelvic fractures. A total of 109 patients underwent AE, 22 underwent PP, and 53 received MT. A total of 123 patients received all 3 interventions. Sixteen patients died during hospitalization from causes other than untreatable (abbreviated injury scale, 6) head injury. Variables incorporated into multivariable models included age, sex, Tile/Orthopedic Trauma Association grade, admission lactate, heart rate (HR), and systolic blood pressure (SBP). Addition of hematoma volume resulted in a significant improvement in model performance, with AUC for the composite outcome (AE, PP, or MT) increasing from 0.74 to 0.83 (p < 0.001). Adjusted unit odds more than doubled for every additional 200 mL of hematoma volume. Increase in model AUC for mortality with incorporation of hematoma volume was not statistically significant (0.85 vs. 0.90, p = 0.12).

CONCLUSION

Hematoma volumes measured using a rapid automated deep learning algorithm improved prediction of need for AE, PP, or MT. Simultaneous automated measurement of multiple sources of bleeding at CT could augment outcome prediction in trauma patients.

LEVEL OF EVIDENCE

Diagnostic, level IV.

摘要

简介

入院计算机断层扫描(CT)是一种广泛用于骨盆骨折患者的诊断工具。在这项初步研究中,我们假设使用快速自动化深度学习的定量可视化和测量算法得出的骨盆血肿量可以预测干预措施和结果,包括(a)是否需要血管栓塞术(AE)、骨盆填塞(PP)或大量输血(MT),以及(b)住院死亡率。

方法

我们对 2008 年至 2017 年间接受入院腹部骨盆创伤 CT 的 253 例出血性骨盆骨折患者进行了单中心回顾性分析。纳入的患者血肿量大于或等于 30ml,年龄在 18 岁及以上,且在手术或血管造影干预前进行了增强 CT。通过交叉验证,使用深度学习定量可视化和测量算法以前对自动骨盆血肿量进行了测量。需要 MT、AE 或 PP 的复合依赖变量被用作主要终点。通过比较有无血肿量作为预测因子的多变量模型的性能,评估血肿量的附加效用。确定了在临床相关阈值下的接收者操作特征曲线(ROC)下面积(AUC)和敏感性、特异性和预测值。得出了每个 200ml 增量的自动骨盆血肿量的调整优势比。

结果

中位年龄为 47 岁(四分位间距,29-61),70%的患者为男性。中位损伤严重程度评分(ISS)为 22(14-36)。94%的患者有其他身体部位的损伤,73%的患者有多发伤(ISS,≥16)。33%的患者有Tile/骨科创伤协会(OTA)B 型骨折,24%的患者有 C 型骨盆骨折。109 例患者行 AE,22 例患者行 PP,53 例患者行 MT。123 例患者接受了所有 3 种干预措施。16 例患者因可治疗(损伤严重程度评分,6)以外的原因(颅脑损伤)在住院期间死亡。纳入多变量模型的变量包括年龄、性别、Tile/OTA 分级、入院时乳酸、心率(HR)和收缩压(SBP)。添加血肿量可显著提高模型性能,复合结果(AE、PP 或 MT)的 AUC 从 0.74 增加到 0.83(p <0.001)。每增加 200ml 血肿量,校正后的单位优势比增加一倍以上。将血肿量纳入模型后,死亡率的 AUC 增加不具有统计学意义(0.85 与 0.90,p=0.12)。

结论

使用快速自动化深度学习算法测量的血肿量可提高对 AE、PP 或 MT 需求的预测。CT 同时自动测量多个出血源可以提高创伤患者的预后预测能力。

证据水平

诊断,IV 级。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b918/7830753/95c53ebc3fed/nihms-1549032-f0001.jpg

相似文献

引用本文的文献

本文引用的文献

7
Deep Learning: A Primer for Radiologists.深度学习:放射科医生入门。
Radiographics. 2017 Nov-Dec;37(7):2113-2131. doi: 10.1148/rg.2017170077.
10
A survey on deep learning in medical image analysis.深度学习在医学图像分析中的应用研究综述。
Med Image Anal. 2017 Dec;42:60-88. doi: 10.1016/j.media.2017.07.005. Epub 2017 Jul 26.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验