Suppr超能文献

人工智能 CAD 工具在创伤影像学中的应用:美国急诊放射学会(ASER)人工智能/机器学习专家小组的范围综述。

Artificial intelligence CAD tools in trauma imaging: a scoping review from the American Society of Emergency Radiology (ASER) AI/ML Expert Panel.

机构信息

Department of Diagnostic Radiology and Nuclear Medicine, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, USA.

Cardiothoracic Imaging, Department of Radiology, Larner College of Medicine, University of Vermont, Burlington, VT, USA.

出版信息

Emerg Radiol. 2023 Jun;30(3):251-265. doi: 10.1007/s10140-023-02120-1. Epub 2023 Mar 14.

Abstract

BACKGROUND

AI/ML CAD tools can potentially improve outcomes in the high-stakes, high-volume model of trauma radiology. No prior scoping review has been undertaken to comprehensively assess tools in this subspecialty.

PURPOSE

To map the evolution and current state of trauma radiology CAD tools along key dimensions of technology readiness.

METHODS

Following a search of databases, abstract screening, and full-text document review, CAD tool maturity was charted using elements of data curation, performance validation, outcomes research, explainability, user acceptance, and funding patterns. Descriptive statistics were used to illustrate key trends.

RESULTS

A total of 4052 records were screened, and 233 full-text articles were selected for content analysis. Twenty-one papers described FDA-approved commercial tools, and 212 reported algorithm prototypes. Works ranged from foundational research to multi-reader multi-case trials with heterogeneous external data. Scalable convolutional neural network-based implementations increased steeply after 2016 and were used in all commercial products; however, options for explainability were narrow. Of FDA-approved tools, 9/10 performed detection tasks. Dataset sizes ranged from < 100 to > 500,000 patients, and commercialization coincided with public dataset availability. Cross-sectional torso datasets were uniformly small. Data curation methods with ground truth labeling by independent readers were uncommon. No papers assessed user acceptance, and no method included human-computer interaction. The USA and China had the highest research output and frequency of research funding.

CONCLUSIONS

Trauma imaging CAD tools are likely to improve patient care but are currently in an early stage of maturity, with few FDA-approved products for a limited number of uses. The scarcity of high-quality annotated data remains a major barrier.

摘要

背景

人工智能/机器学习 CAD 工具有可能改善高风险、大容量创伤放射学的治疗效果。目前还没有进行过全面的审查,以评估这个亚专业领域的工具。

目的

按照技术准备的关键维度,绘制创伤放射学 CAD 工具的发展和现状图。

方法

在数据库搜索、摘要筛选和全文文献审查之后,使用数据管理、性能验证、结果研究、可解释性、用户接受度和资金模式的元素来绘制 CAD 工具的成熟度图。使用描述性统计数据来说明主要趋势。

结果

共筛选了 4052 条记录,并对 233 篇全文文章进行了内容分析。有 21 篇论文描述了 FDA 批准的商业工具,212 篇论文报告了算法原型。这些工作从基础研究到多读者多案例的试验,涉及到不同来源的外部数据。可扩展的卷积神经网络实现方法在 2016 年后急剧增加,并且被应用于所有商业产品中;然而,可解释性的选择范围很窄。在 FDA 批准的工具中,有 9/10 可以执行检测任务。数据集的大小从<100 到>500,000 个患者不等,并且商业化与公共数据集的可用性是同时发生的。横断面躯干数据集的规模普遍较小。具有独立读者进行地面实况标记的数据管理方法并不常见。没有论文评估用户接受度,也没有方法包括人机交互。美国和中国的研究产出和研究资金的频率最高。

结论

创伤成像 CAD 工具可能会改善患者的治疗效果,但目前处于早期成熟阶段,仅有少数几个获得 FDA 批准的产品,并且用途有限。高质量注释数据的缺乏仍然是一个主要障碍。

相似文献

引用本文的文献

本文引用的文献

4
An Interpretable Approach to Automated Severity Scoring in Pelvic Trauma.一种用于骨盆创伤自动严重程度评分的可解释方法。
Med Image Comput Comput Assist Interv. 2021 Sep-Oct;12903:424-433. doi: 10.1007/978-3-030-87199-4_40. Epub 2021 Sep 21.
5
Toward automated interpretable AAST grading for blunt splenic injury.实现钝性脾损伤 AAST 分级的自动化可解释性。
Emerg Radiol. 2023 Feb;30(1):41-50. doi: 10.1007/s10140-022-02099-1. Epub 2022 Nov 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验