Suppr超能文献

异源三聚体G蛋白偶联信号通路与WRKY转录因子之间的相互作用调节植物对次优微量营养素条件的反应。

Crosstalk between heterotrimeric G protein-coupled signaling pathways and WRKY transcription factors modulating plant responses to suboptimal micronutrient conditions.

作者信息

Wu Ting-Ying, Krishnamoorthi Shalini, Goh Honzhen, Leong Richalynn, Sanson Amy Catherine, Urano Daisuke

机构信息

Temasek Life Sciences Laboratory, Singapore.

Mathematical Sciences Institute, Australian National University, Canberra, Australia.

出版信息

J Exp Bot. 2020 May 30;71(10):3227-3239. doi: 10.1093/jxb/eraa108.

Abstract

Nutrient stresses induce foliar chlorosis and growth defects. Here we propose heterotrimeric G proteins as signaling mediators of various nutrient stresses, through meta-analyses of >20 transcriptomic data sets associated with nutrient stresses or G protein mutations. Systematic comparison of transcriptomic data yielded 104 genes regulated by G protein subunits under common nutrient stresses: 69 genes under Gβ subunit (AGB1) control and 35 genes under Gα subunit (GPA1) control. Quantitative real-time PCR experiments validate that several transcription factors and metal transporters changed in expression level under suboptimal iron, zinc, and/or copper concentrations, while being misregulated in the Arabidopsis Gβ-null (agb1) mutant. The agb1 mutant had altered metal ion profiles and exhibited severe growth arrest under zinc stress, and aberrant root waving under iron and zinc stresses, while the Gα-null mutation attenuated leaf chlorosis under iron deficiency in both Arabidopsis and rice. Our transcriptional network analysis inferred computationally that WRKY-family transcription factors mediate the AGB1-dependent nutrient responses. As corroborating evidence of our inference, ectopic expression of WRKY25 or WRKY33 rescued the zinc stress phenotypes and the expression of zinc transporters in the agb1-2 background. These results, together with Gene Ontology analyses, suggest two contrasting roles for G protein-coupled signaling pathways in micronutrient stress responses: one enhancing general stress tolerance and the other modulating ion homeostasis through WRKY transcriptional regulatory networks. In addition, tolerance to iron stress in the rice Gα mutant provides an inroad to improve nutrient stress tolerance of agricultural crops by manipulating G protein signaling.

摘要

营养胁迫会导致叶片黄化和生长缺陷。通过对20多个与营养胁迫或G蛋白突变相关的转录组数据集进行荟萃分析,我们提出异源三聚体G蛋白作为各种营养胁迫的信号传导介质。对转录组数据的系统比较产生了104个在常见营养胁迫下受G蛋白亚基调控的基因:69个基因受Gβ亚基(AGB1)控制,35个基因受Gα亚基(GPA1)控制。定量实时PCR实验证实,在铁、锌和/或铜浓度次优的情况下,几种转录因子和金属转运蛋白的表达水平发生了变化,而在拟南芥Gβ缺失(agb1)突变体中其表达失调。agb1突变体的金属离子谱发生了改变,在锌胁迫下表现出严重的生长停滞,在铁和锌胁迫下根出现异常弯曲,而Gα缺失突变减弱了拟南芥和水稻缺铁时的叶片黄化现象。我们的转录网络分析通过计算推断WRKY家族转录因子介导AGB1依赖性的营养反应。作为我们推断的佐证,WRKY25或WRKY33的异位表达挽救了agb1 - 2背景下的锌胁迫表型和锌转运蛋白的表达。这些结果与基因本体分析一起表明,G蛋白偶联信号通路在微量营养胁迫反应中具有两种相反的作用:一种是增强一般胁迫耐受性,另一种是通过WRKY转录调控网络调节离子稳态。此外,水稻Gα突变体对铁胁迫的耐受性为通过操纵G蛋白信号来提高农作物的营养胁迫耐受性提供了途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验