Suppr超能文献

构象灵活性与β-葡萄糖苷酶点突变的葡萄糖耐量相关-计算研究。

Conformational flexibility correlates with glucose tolerance for point mutations in β-glucosidases - a computational study.

机构信息

Laboratory of Molecular Modeling and Bioinformatics, Department of Exact and Biological Sciences (DECEB), Universidade Federal de São João Del-Rei, Sete Lagoas, Brazil.

Institute of General, Inorganic and Theoretical Chemistry (IGITC), Center for Molecular Biosciences Innsbruck (CMBI), Leopold-Franzens-Universität-Innsbruck, Innsbruck, Austria.

出版信息

J Biomol Struct Dyn. 2021 Mar;39(5):1621-1634. doi: 10.1080/07391102.2020.1734484. Epub 2020 Mar 10.

Abstract

β-glucosidases (EC 3.2.1.21) have been described as essential to second-generation biofuel production. They act in the last step of the lignocellulosic saccharification, cleaving the β - 1,4 glycosidic bonds in cellobiose to produce two molecules of glucose. However, β-glucosidases have been described as strongly inhibited by glucose, causing an increment of cellobiose concentration. Also, cellobiose is an inhibitor of other enzymes used in this process, such as exoglucanases and endoglucanases. Hence, the engineering of thermostable and glucose-tolerant β-glucosidases has been targeted by many studies. In this study, we performed high sampling accelerated molecular dynamics for a wild glucose-tolerant GH1 β-glucosidase (Bgl1A), a wild non-tolerant (Bgl1B), and a set of glucose-tolerant Bgl1B's mutants: V302F, N301Q/V302F, F172I, V227M, G246S, T299S, and H228T. Our results suggest that point mutations promissory to induce glucose tolerance trend to enhance the mobility of the flexible loops around the active site. Mutations affected B and C loops regions, and an αβ-hairpin motif between them. Conformational clusters and free energy landscape profiles suggest that the mobility acquired by mutants allows a higher closure of the substrate channel. This closure is compatible with a higher impedance for glucose entrance and stimulus of its withdrawal. Based on mutants' structural analyses, we inferred that both the direct stereochemical effect on the glucose path and the changes in the mobility affect glucose tolerance. We hope these results be useful for the rational design of glucose-tolerant and industrially promising enzymes.Communicated by Ramaswamy H. Sarma.

摘要

β-葡萄糖苷酶(EC 3.2.1.21)已被描述为第二代生物燃料生产所必需的。它们在木质纤维素糖化的最后一步起作用,切割纤维二糖中的β-1,4 糖苷键,生成两分子葡萄糖。然而,β-葡萄糖苷酶已被描述为强烈抑制葡萄糖,导致纤维二糖浓度增加。此外,纤维二糖是该过程中使用的其他酶的抑制剂,如外切葡聚糖酶和内切葡聚糖酶。因此,许多研究都针对耐热和耐葡萄糖的β-葡萄糖苷酶进行了工程设计。在这项研究中,我们对一种野生型耐葡萄糖 GH1β-葡萄糖苷酶(Bgl1A)、一种野生型不耐葡萄糖的酶(Bgl1B)和一组耐葡萄糖的 Bgl1B 突变体:V302F、N301Q/V302F、F172I、V227M、G246S、T299S 和 H228T 进行了高采样加速分子动力学模拟。我们的结果表明,有望诱导葡萄糖耐受性的点突变趋势增强活性位点周围柔性环的流动性。突变影响 B 和 C 环区域,以及它们之间的一个 αβ-发夹模体。构象簇和自由能景观图表明,突变体获得的流动性允许底物通道更高的闭合。这种闭合与葡萄糖进入的更高阻抗和其退出的刺激兼容。基于突变体的结构分析,我们推断葡萄糖路径的直接立体化学效应和流动性变化都影响葡萄糖耐受性。我们希望这些结果对耐葡萄糖和具有工业前景的酶的合理设计有用。由 Ramaswamy H. Sarma 交流。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验