Laboratory of Molecular Modeling and Drug Design, Department of Biochemistry and Imunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
Laboratory of Structural Biology, Department of Molecular Biology, Universität Salzburg, Salzburg, Austria.
J Biomol Struct Dyn. 2022;40(19):9214-9234. doi: 10.1080/07391102.2021.1924271. Epub 2021 May 10.
The main-protease (M) catalyzes a crucial step for the SARS-CoV-2 life cycle. The recent SARS-CoV-2 presents the main protease (M) with 12 mutations compared to SARS-CoV (M). Recent studies point out that these subtle differences lead to mobility variances at the active site loops with functional implications. We use metadynamics simulations and a sort of computational analysis to probe the dynamic, pharmacophoric and catalytic environment differences between the monomers of both enzymes. So, we verify how much intrinsic distinctions are preserved in the functional dimer of M, as well as its implications for ligand accessibility and optimized drug screening. We find a significantly higher accessibility to open binding conformers in the M monomer compared to M. A higher hydration propensity for the M S2 loop with the A46S substitution seems to exercise a key role. Quantum calculations suggest that the wider conformations for M are less catalytically active in the monomer. However, the statistics for contacts involving the N-finger suggest higher maintenance of this activity at the dimer. Docking analyses suggest that the ability to vary the active site width can be important to improve the access of the ligand to the active site in different ways. So, we carry out a multiconformational virtual screening with different ligand bases. The results point to the importance of taking into account the protein conformational multiplicity for new promissors anti M ligands. We hope these results will be useful in prospecting, repurposing and/or designing new anti SARS-CoV-2 drugs.Communicated by Ramaswamy H. Sarma.
主蛋白酶(M)催化 SARS-CoV-2 生命周期中的关键步骤。与 SARS-CoV(M)相比,最近的 SARS-CoV-2 使主蛋白酶(M)发生了 12 处突变。最近的研究指出,这些细微的差异导致活性位点环的移动性发生变化,从而产生功能影响。我们使用元动力学模拟和一种计算分析方法来探测两种酶单体之间的动态、药效团和催化环境差异。因此,我们验证了功能二聚体中保留了多少内在差异,以及这些差异对配体可及性和优化药物筛选的影响。我们发现 M 单体中开放结合构象的可及性明显高于 M。带有 A46S 取代的 M S2 环具有更高的水合倾向,似乎发挥了关键作用。量子计算表明,单体中 M 的更宽构象的催化活性较低。然而,涉及 N 指的接触统计数据表明,在二聚体中,这种活性的维持更高。对接分析表明,改变活性位点宽度的能力对于以不同方式改善配体进入活性位点的能力可能很重要。因此,我们进行了不同配体基的多构象虚拟筛选。结果表明,考虑到蛋白质构象的多样性对于新型有前途的抗 M 配体非常重要。我们希望这些结果对探索、重新利用和/或设计新的抗 SARS-CoV-2 药物有所帮助。由 Ramaswamy H. Sarma 交流。