Suppr超能文献

用长程校正泛函的Kohn-Sham密度泛函理论的轨道能量表示的激发能。

Excitation energies expressed as orbital energies of Kohn-Sham density functional theory with long-range corrected functionals.

作者信息

Hirao Kimihiko, Chan Bun, Song Jong-Won, Bhattarai Kamala, Tewary Subrata

机构信息

RIKEN Center for Computational Science, Chuo-ku, Kobe, Japan.

Fukui Institute for Fundamental Chemistry, Kyoto University, Sakyo-ku, Kyoto, Japan.

出版信息

J Comput Chem. 2020 May 30;41(14):1368-1383. doi: 10.1002/jcc.26181. Epub 2020 Feb 28.

Abstract

A new simple and conceptual theoretical scheme is proposed for estimating one-electron excitation energies using Kohn-Sham (KS) solutions. One-electron transitions that are dominated by the promotion from one initially occupied orbital to one unoccupied orbital of a molecular system can be expressed in a two-step process, ionization, and electron attachment. KS with long-range corrected (LC) functionals satisfies Janak's theorem and LC total energy varies almost linearly as a function of its fractional occupation number between the integer electron points. Thus, LC reproduces ionization energies (IPs) and electron affinities (EAs) with high accuracy and one-electron excitation energies are expressed as the difference between the occupied orbital energy of a neutral molecule and the corresponding unoccupied orbital energy of its cation. Two such expressions can be used, with one employing the orbital energies for the neutral and cationic systems, while the other utilizes orbital energies of just the cation. Because the EA of a molecule is the IP of its anion, if we utilize this identity, the two expressions coincide and give the same excitation energies. Reasonable results are obtained for valence and core excitations using only orbital energies.

摘要

提出了一种新的简单且具有概念性的理论方案,用于利用Kohn-Sham(KS)解来估算单电子激发能。分子体系中,从一个初始占据轨道跃迁到一个未占据轨道的单电子跃迁可通过两步过程来表示,即电离和电子附着。具有长程校正(LC)泛函的KS满足Janak定理,并且LC总能量在整数电子点之间随其分数占据数几乎呈线性变化。因此,LC能高精度地再现电离能(IPs)和电子亲和能(EAs),单电子激发能表示为中性分子占据轨道能量与其阳离子相应未占据轨道能量之差。可以使用两种这样的表达式,一种采用中性和阳离子体系的轨道能量,另一种仅利用阳离子的轨道能量。由于分子的EA是其阴离子的IP,如果我们利用这一特性,这两种表达式会重合并给出相同的激发能。仅使用轨道能量就能得到价态和芯态激发的合理结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验