Suppr超能文献

采用全局标度校正方法对分子的准粒子、激发和共振能量进行密度泛函预测。

Density Functional Prediction of Quasiparticle, Excitation, and Resonance Energies of Molecules With a Global Scaling Correction Approach.

作者信息

Yang Xiaolong, Zheng Xiao, Yang Weitao

机构信息

Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, China.

Department of Chemistry, Duke University, Durham, NC, United States.

出版信息

Front Chem. 2020 Dec 8;8:588808. doi: 10.3389/fchem.2020.588808. eCollection 2020.

Abstract

Molecular quasiparticle and excitation energies determine essentially the spectral characteristics measured in various spectroscopic experiments. Accurate prediction of these energies has been rather challenging for ground-state density functional methods, because the commonly adopted density function approximations suffer from delocalization error. In this work, by presuming a quantitative correspondence between the quasiparticle energies and the generalized Kohn-Sham orbital energies, and employing a previously developed global scaling correction approach, we achieve substantially improved prediction of molecular quasiparticle and excitation energies. In addition, we also extend our previous study on temporary anions in resonant states, which are associated with negative molecular electron affinities. The proposed approach does not require any explicit self-consistent field calculation on the excited-state species, and is thus highly efficient and convenient for practical purposes.

摘要

分子准粒子和激发能本质上决定了在各种光谱实验中测量的光谱特征。对于基态密度泛函方法而言,准确预测这些能量颇具挑战性,因为常用的密度函数近似存在离域误差。在这项工作中,通过假定准粒子能量与广义Kohn-Sham轨道能量之间存在定量对应关系,并采用先前开发的全局标度校正方法,我们在分子准粒子和激发能的预测方面取得了显著改进。此外,我们还扩展了之前对共振态临时阴离子的研究,这些阴离子与负分子电子亲和能相关。所提出的方法不需要对激发态物种进行任何显式的自洽场计算,因此对于实际应用而言高效且便捷。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6402/7793789/947faa010c11/fchem-08-588808-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验