Suppr超能文献

从图像中学习图案形成的物理学。

Learning the Physics of Pattern Formation from Images.

作者信息

Zhao Hongbo, Storey Brian D, Braatz Richard D, Bazant Martin Z

机构信息

Department of Chemical Engineering, Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.

Toyota Research Institute, Cambridge, Massachusetts 02139, USA.

出版信息

Phys Rev Lett. 2020 Feb 14;124(6):060201. doi: 10.1103/PhysRevLett.124.060201.

Abstract

Using a framework of partial differential equation-constrained optimization, we demonstrate that multiple constitutive relations can be extracted simultaneously from a small set of images of pattern formation. Examples include state-dependent properties in phase-field models, such as the diffusivity, kinetic prefactor, free energy, and direct correlation function, given only the general form of the Cahn-Hilliard equation, Allen-Cahn equation, or dynamical density functional theory (phase-field crystal model). Constraints can be added based on physical arguments to accelerate convergence and avoid spurious results. Reconstruction of the free energy functional, which contains nonlinear dependence on the state variable and differential or convolutional operators, opens the possibility of learning nonequilibrium thermodynamics from only a few snapshots of the dynamics.

摘要

使用偏微分方程约束优化框架,我们证明可以从一小套图案形成图像中同时提取多个本构关系。示例包括相场模型中依赖于状态的属性,如扩散率、动力学前置因子、自由能和直接相关函数,前提是仅给出Cahn-Hilliard方程、Allen-Cahn方程或动态密度泛函理论(相场晶体模型)的一般形式。可以基于物理论据添加约束以加速收敛并避免虚假结果。自由能泛函的重构包含对状态变量以及微分或卷积算子的非线性依赖,这开启了仅从动力学的少数快照学习非平衡热力学的可能性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验