Suppr超能文献

基于物理信息神经网络的血栓材料特性无创推断

Non-invasive Inference of Thrombus Material Properties with Physics-Informed Neural Networks.

作者信息

Yin Minglang, Zheng Xiaoning, Humphrey Jay D, Em Karniadakis George

机构信息

Center for Biomedical Engineering, Brown University, Providence, RI 02912.

School of Engineering, Brown University, Providence, RI 02912.

出版信息

Comput Methods Appl Mech Eng. 2021 Mar 1;375. doi: 10.1016/j.cma.2020.113603. Epub 2020 Dec 22.

Abstract

We employ physics-informed neural networks (PINNs) to infer properties of biological materials using synthetic data. In particular, we successfully apply PINNs on inferring permeability and viscoelastic modulus from thrombus deformation data, which can be described by the fourth-order Cahn-Hilliard and Navier-Stokes Equations. In PINNs, the partial differential equations are encoded into a loss function, where partial derivatives can be obtained through automatic differentiation (AD). In addition to tackling the challenge of calculating the fourth-order derivative in the Cahn-Hilliard equation with AD, we introduce an auxiliary network along with the main neural network to approximate the second-derivative of the energy potential term. Our model can simultaneously predict unknown material parameters and velocity, pressure, and deformation gradient fields by merely training with partial information among all data, i.e., phase field and pressure measurements, while remaining highly flexible in sampling within the spatio-temporal domain for data acquisition. We validate our model by numerical solutions from the spectral/ element method (SEM) and demonstrate its robustness by training it with noisy measurements. Our results show that PINNs can infer the material properties from noisy synthetic data, and thus they have great potential for inferring these properties from experimental multi-modality and multi-fidelity data.

摘要

我们采用物理信息神经网络(PINNs),利用合成数据来推断生物材料的特性。具体而言,我们成功地将PINNs应用于从血栓变形数据中推断渗透率和粘弹性模量,这些数据可以用四阶Cahn-Hilliard方程和Navier-Stokes方程来描述。在PINNs中,偏微分方程被编码到一个损失函数中,其中偏导数可以通过自动微分(AD)获得。除了应对用AD计算Cahn-Hilliard方程中的四阶导数这一挑战外,我们还引入了一个辅助网络和主神经网络,以近似能量势项的二阶导数。我们的模型仅通过在所有数据中的部分信息(即相场和压力测量值)进行训练,就能同时预测未知的材料参数以及速度、压力和变形梯度场,同时在时空域内进行数据采集的采样时仍保持高度灵活性。我们通过谱/有限元方法(SEM)的数值解来验证我们的模型,并通过用噪声测量值对其进行训练来证明其鲁棒性。我们的结果表明,PINNs可以从有噪声的合成数据中推断材料特性,因此它们在从实验多模态和多保真度数据中推断这些特性方面具有巨大潜力。

相似文献

7
Tackling the curse of dimensionality with physics-informed neural networks.用物理信息神经网络解决维度诅咒。
Neural Netw. 2024 Aug;176:106369. doi: 10.1016/j.neunet.2024.106369. Epub 2024 May 7.

引用本文的文献

7
Accelerated simulation methodologies for computational vascular flow modelling.加速计算血管流动建模的模拟方法。
J R Soc Interface. 2024 Feb;21(211):20230565. doi: 10.1098/rsif.2023.0565. Epub 2024 Feb 14.
9
Machine Learning and the Conundrum of Stroke Risk Prediction.机器学习与中风风险预测难题
Arrhythm Electrophysiol Rev. 2023 Apr 12;12:e07. doi: 10.15420/aer.2022.34. eCollection 2023.

本文引用的文献

4
Learning the Physics of Pattern Formation from Images.从图像中学习图案形成的物理学。
Phys Rev Lett. 2020 Feb 14;124(6):060201. doi: 10.1103/PhysRevLett.124.060201.
8
Deep Convolutional Neural Network for Inverse Problems in Imaging.基于深度卷积神经网络的医学影像反问题研究
IEEE Trans Image Process. 2017 Sep;26(9):4509-4522. doi: 10.1109/TIP.2017.2713099. Epub 2017 Jun 15.
9
Data-driven discovery of partial differential equations.基于数据驱动的偏微分方程发现。
Sci Adv. 2017 Apr 26;3(4):e1602614. doi: 10.1126/sciadv.1602614. eCollection 2017 Apr.
10
A General Shear-Dependent Model for Thrombus Formation.一种基于剪切力的血栓形成通用模型。
PLoS Comput Biol. 2017 Jan 17;13(1):e1005291. doi: 10.1371/journal.pcbi.1005291. eCollection 2017 Jan.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验