Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA.
Departments of Physiology and Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Physiol Rep. 2020 Feb;8(4):e14379. doi: 10.14814/phy2.14379.
STK39 encodes a serine threonine kinase, SPAK, which is part of a multi-kinase network that determines renal Na reabsorption and blood pressure (BP) through regulation of sodium-chloride co-transporters in the kidney. Variants within STK39 are associated with susceptibility to essential hypertension, and constitutively active SPAK mice are hypertensive and hyperkalemic, similar to familial hyperkalemic hyperkalemia in humans. SPAK null mice are hypotensive and mimic Gitelman syndrome, a rare monogenic salt wasting human disorder. Mice exhibit nephron segment-specific expression of full length SPAK and N-terminally truncated SPAK isoforms (SPAK2 and KS-SPAK) with impaired kinase function. SPAK2 and KS-SPAK function to inhibit phosphorylation of cation co-transporters by full length SPAK. However, the existence of orthologous SPAK2 or KS-SPAK within the human kidney, and the role of such SPAK isoforms in nephron segment-specific regulation of Na reabsorption, still have not been determined. In this study, we examined both human and mouse kidney transcriptomes to uncover novel transcriptional regulation of STK39. We established that humans also express STK39 transcript isoforms similar to those found in mice but differ in abundance and are transcribed from human-specific promoters. In summary, STK39 undergoes species-specific transcriptional regulation, resulting in differentially expressed alternative transcripts that have implications for the design and testing of novel SPAK-targeting antihypertensive medications.
STK39 编码丝氨酸苏氨酸激酶 SPAK,它是决定肾脏钠重吸收和血压(BP)的多激酶网络的一部分,通过调节肾脏中的钠-氯共转运体。STK39 内的变体与原发性高血压的易感性有关,组成型激活的 SPAK 小鼠是高血压和高钾血症,类似于人类的家族性高钾血症。SPAK 缺失小鼠低血压,模拟 Gitelman 综合征,一种罕见的单基因盐耗竭人类疾病。小鼠表现出全长 SPAK 和 N 端截断 SPAK 同工型(SPAK2 和 KS-SPAK)的肾单位节特异性表达,激酶功能受损。SPAK2 和 KS-SPAK 发挥作用抑制全长 SPAK 对阳离子共转运体的磷酸化。然而,人类肾脏中是否存在同源的 SPAK2 或 KS-SPAK,以及这种 SPAK 同工型在肾单位节特异性调节钠重吸收中的作用,尚未确定。在这项研究中,我们检查了人和小鼠的肾脏转录组,以揭示 STK39 的新转录调控。我们确定人类也表达与在小鼠中发现的相似的 STK39 转录本同工型,但丰度不同,并且由人类特异性启动子转录。总之,STK39 经历物种特异性转录调控,导致差异表达的替代转录本,这对设计和测试新型 SPAK 靶向降压药物具有重要意义。