Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St Louis, MO, USA.
Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA; National Heart Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, USA.
Atherosclerosis. 2020 Mar;297:102-110. doi: 10.1016/j.atherosclerosis.2020.02.005. Epub 2020 Feb 14.
Several genes are known to contribute to the levels and metabolism of HDL-C, however, their protective effects in cardiovascular disease (CVD), healthy aging, and longevity are complex and poorly understood. It is also unclear if these genes predict longitudinal HDL-C change. We aimed to identify loci influencing HDL-C change.
We performed a genome-wide association study (GWAS) with harmonized HDL-C and imputed genotype in three family-based studies recruited for exceptional survival (Long Life Family Study), from community-based (Framingham Heart Study) and enriched for CVD (Family Heart Study). In 7738 individuals with at least 2 visits, we employed a growth curve model to estimate the random linear trajectory parameter of age-sex-adjusted HDL-C for each person. GWAS was performed using a linear regression model on HDL-C change accounting for kinship correlations, population structure, and differences among studies.
We identified a novel association for HDL-C with GRID1 (p = 5.43 × 10), which encodes a glutamate receptor channel subunit involved in synaptic plasticity. Seven suggestive novel loci (p < 1.0 × 10; MBOAT2, LINC01876-NR4A2, NTNG2, CYSLTR2, SYNE2, CTXND1-LINC01314, and CYYR1) and a known lipid gene (ABCA10) showed associations with HDL-C change. Two additional sex-specific suggestive loci were identified in women (DCLK2 and KCNJ2). Several of these genetic variants are associated with lipid-related conditions influencing cardiovascular and metabolic health, have predictive regulatory function, and are involved in lipid-related pathways.
Modeling longitudinal HDL-C in prospective studies, with differences in healthy aging, longevity and CVD risk, contributed to gene discovery and provided insights into mechanisms of HDL-C regulation.
有几个基因被认为与高密度脂蛋白胆固醇(HDL-C)的水平和代谢有关,然而,它们在心血管疾病(CVD)、健康衰老和长寿方面的保护作用是复杂的,目前还不太清楚。这些基因是否能预测 HDL-C 的纵向变化也不清楚。我们的目的是确定影响 HDL-C 变化的基因座。
我们对三个基于家族的研究(长寿家族研究)进行了全基因组关联研究(GWAS),这些研究都纳入了经过协调的 HDL-C 和推断的基因型,并招募了来自社区的研究(弗雷明汉心脏研究)和心血管疾病丰富的研究(家庭心脏研究)。在至少有 2 次就诊的 7738 名个体中,我们采用生长曲线模型估计每个人年龄性别调整后的 HDL-C 的随机线性轨迹参数。使用线性回归模型对 HDL-C 变化进行 GWAS,该模型考虑了亲缘关系相关性、群体结构和研究之间的差异。
我们发现了一个新的与 HDL-C 相关的关联基因 GRID1(p=5.43×10),该基因编码一种谷氨酸受体通道亚基,参与突触可塑性。有 7 个提示性新基因座(p<1.0×10;MBOAT2、LINC01876-NR4A2、NTNG2、CYSLTR2、SYNE2、CTXND1-LINC01314 和 CYYR1)和一个已知的脂质基因(ABCA10)与 HDL-C 变化相关。在女性中还发现了两个额外的性别特异性提示性基因座(DCLK2 和 KCNJ2)。这些遗传变异中的一些与影响心血管和代谢健康的脂质相关疾病有关,具有预测调节功能,并参与脂质相关途径。
对前瞻性研究中纵向 HDL-C 进行建模,考虑到健康衰老、长寿和 CVD 风险的差异,有助于发现基因,并深入了解 HDL-C 调节的机制。