Purohit Ashvini, Centeno Silvia P, Wypysek Sarah K, Richtering Walter, Wöll Dominik
Institute of Physical Chemistry , RWTH Aachen University , Landoltweg 2 , 52074 Aachen , Germany . Email:
Chem Sci. 2019 Sep 20;10(44):10336-10342. doi: 10.1039/c9sc03373d. eCollection 2019 Nov 28.
Polymer nanostructures have enormous potential for various applications in materials and life sciences. In order to exploit and understand their full capabilities, a detailed analysis of their structures and the environmental conditions in them is essential on the nanoscopic scale. With a super-resolution fluorescence microscopy technique known as PAINT (Points Accumulation for Imaging in Nanoscale Topography), we imaged colloidal hydrogel networks, so-called microgels, having a hydrodynamic radius smaller than the diffraction limit, gaining unprecedented insight into their full 3D structure which is not accessible in this much detail with any other experimental method. In addition to imaging of the microgel structure, the use of Nile Red as the solvatochromic fluorophore allowed us to resolve the polarity conditions within the investigated microgels, thus providing nanoscopic information on the ,,-position of labels including their polarity without the need of covalent labelling. With this imaging approach, we give a detailed insight into adapting structural and polarity properties of temperature-responsive microgels when changing the temperature beyond the volume phase transition.
聚合物纳米结构在材料科学和生命科学的各种应用中具有巨大潜力。为了开发并了解其全部功能,在纳米尺度上对其结构及其中的环境条件进行详细分析至关重要。借助一种名为PAINT(纳米尺度形貌成像的点积累)的超分辨率荧光显微镜技术,我们对流体动力学半径小于衍射极限的胶体水凝胶网络(即所谓的微凝胶)进行了成像,以前所未有的方式深入了解了其完整的三维结构,而这是任何其他实验方法都无法如此详细地获取的。除了对微凝胶结构进行成像外,使用尼罗红作为溶剂化显色荧光团使我们能够解析所研究微凝胶内部的极性条件,从而在无需共价标记的情况下提供有关标记物位置及其极性的纳米级信息。通过这种成像方法,我们深入详细地了解了在温度变化超过体积相变时温度响应性微凝胶的结构和极性特性是如何变化的。