Auer Alexander, Schlichthaerle Thomas, Woehrstein Johannes B, Schueder Florian, Strauss Maximilian T, Grabmayr Heinrich, Jungmann Ralf
Faculty of Physics and Center for Nanoscience, LMU Munich, Geschwister-Scholl-Platz 1, 80539, Munich.
Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried.
Chemphyschem. 2018 Nov 19;19(22):3024-3034. doi: 10.1002/cphc.201800630. Epub 2018 Oct 8.
Optical super-resolution microscopy is rapidly changing the way imaging studies in the biological and biomedical sciences are conducted. Due to the unique capability of achieving molecular contrast using fluorescent labels and sub-diffraction resolution down to a few tens of nanometers, super-resolution is developing as an attractive imaging modality. While the increased spatial resolution has already enabled structural studies at unprecedented molecular detail, the wide-spread use of super-resolution approaches as a standard characterization technique in biological laboratories has thus far been prevented by mainly two issues: (1) Intricate sample preparation and image acquisition and (2) costly and complex instrumentation. We here introduce a combination of the recently developed super-resolution technique DNA-PAINT (DNA points accumulation for imaging in nanoscale topography) with an easy-to-replicate, custom-built 3D single-molecule microscope (termed liteTIRF) that is an order of magnitude more economic in cost compared to most commercial systems. We assay the performance of our system using synthetic two- and three-dimensional DNA origami structures and show the applicability to single- and multiplexed cellular imaging.
光学超分辨率显微镜正在迅速改变生物和生物医学科学中成像研究的开展方式。由于利用荧光标记实现分子对比度以及低至几十纳米的亚衍射分辨率的独特能力,超分辨率正发展成为一种有吸引力的成像方式。虽然提高的空间分辨率已经能够以前所未有的分子细节进行结构研究,但超分辨率方法作为生物实验室标准表征技术的广泛应用迄今为止主要受到两个问题的阻碍:(1)复杂的样品制备和图像采集;(2)昂贵且复杂的仪器设备。我们在此介绍最近开发的超分辨率技术DNA-PAINT(用于纳米级形貌成像的DNA点积累)与易于复制的定制3D单分子显微镜(称为liteTIRF)的结合,该显微镜与大多数商业系统相比,成本要低一个数量级。我们使用合成的二维和三维DNA折纸结构来检测我们系统的性能,并展示其在单细胞成像和多重细胞成像中的适用性。