Suppr超能文献

锚定在线粒体中的用于光动力治疗的缺氧激活近红外光敏剂。

Hypoxia-activated NIR photosensitizer anchoring in the mitochondria for photodynamic therapy.

作者信息

Xu Feng, Li Haidong, Yao Qichao, Ge Haoying, Fan Jiangli, Sun Wen, Wang Jingyun, Peng Xiaojun

机构信息

State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , Dalian 116024 , P. R. China . Email:

School of Life Science and Biotechnology , Dalian University of Technology , 2 Linggong Road , Dalian 116024 , P. R. China.

出版信息

Chem Sci. 2019 Oct 2;10(45):10586-10594. doi: 10.1039/c9sc03355f. eCollection 2019 Dec 7.

Abstract

Photodynamic therapy is considered as a promising treatment for cancer, but still faces several challenges. The hypoxic environment in solid tumors, imprecise tumor recognition and the lack of selectivity between normal and cancer cells extremely hinder the applications of photodynamic therapy in clinics. Moreover, the "always on" property of photosensitizers also increases the toxicity to normal tissues when exposed to light irradiation. In this study, a hypoxia-activated NIR photosensitizer was synthesized and successfully applied for cancer treatment. is in the inactivated state with low fluorescence whereas its NIR emission ( = 716 nm) was induced reduction caused by nitroreductase at the tumor site. In addition, the reduced product was specially located in the mitochondria and demonstrated a high singlet oxygen production under 660 nm light irradiation, which efficiently induced cell apoptosis (IC = 0.63 μM). The studies carried out in Balb/c mice indicated that was suitable for precise tumor hypoxia imaging and can work as an efficient photosensitizer for restraining tumor growth through the PDT process.

摘要

光动力疗法被认为是一种有前景的癌症治疗方法,但仍面临若干挑战。实体瘤中的缺氧环境、不精确的肿瘤识别以及正常细胞与癌细胞之间缺乏选择性极大地阻碍了光动力疗法在临床上的应用。此外,光敏剂的“常开”特性在暴露于光照时也会增加对正常组织的毒性。在本研究中,合成了一种缺氧激活的近红外光敏剂,并成功应用于癌症治疗。该光敏剂处于低荧光的失活状态,而其近红外发射(λ = 716 nm)是由肿瘤部位的硝基还原酶诱导的还原作用所引发。此外,还原产物特异性定位于线粒体,并在660 nm光照下表现出高单线态氧产生,从而有效诱导细胞凋亡(IC = 0.63 μM)。在Balb/c小鼠中进行的研究表明,该光敏剂适用于精确的肿瘤缺氧成像,并可作为一种有效的光敏剂,通过光动力疗法过程抑制肿瘤生长。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66cd/7020795/3bff603ad5b9/c9sc03355f-s1.jpg

相似文献

1
Hypoxia-activated NIR photosensitizer anchoring in the mitochondria for photodynamic therapy.
Chem Sci. 2019 Oct 2;10(45):10586-10594. doi: 10.1039/c9sc03355f. eCollection 2019 Dec 7.
2
An APN-activated NIR photosensitizer for cancer photodynamic therapy and fluorescence imaging.
Biomaterials. 2020 Sep;253:120089. doi: 10.1016/j.biomaterials.2020.120089. Epub 2020 May 3.
3
Upconversion nanoparticle-based optogenetic nanosystem for photodynamic therapy and cascade gene therapy.
Acta Biomater. 2023 Feb;157:538-550. doi: 10.1016/j.actbio.2022.12.002. Epub 2022 Dec 6.
4
Multifunctional Two-Photon AIE Luminogens for Highly Mitochondria-Specific Bioimaging and Efficient Photodynamic Therapy.
ACS Appl Mater Interfaces. 2019 Jun 12;11(23):20715-20724. doi: 10.1021/acsami.9b04813. Epub 2019 May 30.
7
The investigation of unique water-soluble heptamethine cyanine dye for use as NIR photosensitizer in photodynamic therapy of cancer cells.
Spectrochim Acta A Mol Biomol Spectrosc. 2020 Mar 5;228:117702. doi: 10.1016/j.saa.2019.117702. Epub 2019 Nov 1.
10
Platinum-Based Two-Photon Photosensitizer Responsive to NIR Light in Tumor Hypoxia Microenvironment.
J Med Chem. 2022 Jun 9;65(11):7786-7798. doi: 10.1021/acs.jmedchem.2c00141. Epub 2022 May 23.

引用本文的文献

2
An AIE-active type I/II photosensitizer with mitochondria-to-nuclei cascade targeting for highly efficient photodynamic cancer therapy.
Mater Today Bio. 2025 Jul 28;34:102134. doi: 10.1016/j.mtbio.2025.102134. eCollection 2025 Oct.
5
Multifunctional Organelle-Targeting Probes for Intracellular Imaging and Enhanced Cancer Phototherapy.
Chemistry. 2025 Jul 8;31(38):e202500831. doi: 10.1002/chem.202500831. Epub 2025 Jun 18.
6
Nitroreductase-activatable photosensitizers for selective antimicrobial photodynamic therapy.
RSC Med Chem. 2025 Mar 6;16(5):2133-2141. doi: 10.1039/d4md00890a. eCollection 2025 May 22.
7
A Nanotherapeutic Agent for Synergistic Tumor Therapy: Co-Activation of Photochemical-Biological Effects.
Angew Chem Int Ed Engl. 2025 Apr 17;64(17):e202425631. doi: 10.1002/anie.202425631. Epub 2025 Feb 26.
8
Activatable Photosensitizers: From Fundamental Principles to Advanced Designs.
Angew Chem Int Ed Engl. 2025 Apr 7;64(15):e202423348. doi: 10.1002/anie.202423348. Epub 2025 Feb 21.
9
Smart molecular designs and applications of activatable organic photosensitizers.
Nat Rev Chem. 2025 Jan;9(1):46-60. doi: 10.1038/s41570-024-00662-7. Epub 2024 Nov 6.
10
Excited-State Conjugation/De-Conjugation Driven Nonradiative Thermal Deactivation for Developing Fluorogenic Probes to Diagnose Cancers.
Chem Biomed Imaging. 2024 Jan 5;2(6):432-441. doi: 10.1021/cbmi.3c00107. eCollection 2024 Jun 24.

本文引用的文献

1
Melanin-like nanoparticles decorated with an autophagy-inducing peptide for efficient targeted photothermal therapy.
Biomaterials. 2019 May;203:63-72. doi: 10.1016/j.biomaterials.2019.02.023. Epub 2019 Mar 1.
2
Superoxide Radical Photogenerator with Amplification Effect: Surmounting the Achilles' Heels of Photodynamic Oncotherapy.
J Am Chem Soc. 2019 Feb 13;141(6):2695-2702. doi: 10.1021/jacs.8b13141. Epub 2019 Jan 30.
3
De Novo Design of Phototheranostic Sensitizers Based on Structure-Inherent Targeting for Enhanced Cancer Ablation.
J Am Chem Soc. 2018 Nov 21;140(46):15820-15826. doi: 10.1021/jacs.8b09117. Epub 2018 Nov 9.
4
Magnetic Targeting, Tumor Microenvironment-Responsive Intelligent Nanocatalysts for Enhanced Tumor Ablation.
ACS Nano. 2018 Nov 27;12(11):11000-11012. doi: 10.1021/acsnano.8b05042. Epub 2018 Oct 25.
5
Photodynamic therapy - mechanisms, photosensitizers and combinations.
Biomed Pharmacother. 2018 Oct;106:1098-1107. doi: 10.1016/j.biopha.2018.07.049. Epub 2018 Jul 17.
6
Bacteria-Driven Hypoxia Targeting for Combined Biotherapy and Photothermal Therapy.
ACS Nano. 2018 Jun 26;12(6):5995-6005. doi: 10.1021/acsnano.8b02235. Epub 2018 May 29.
7
An updated overview on the development of new photosensitizers for anticancer photodynamic therapy.
Acta Pharm Sin B. 2018 Mar;8(2):137-146. doi: 10.1016/j.apsb.2017.09.003. Epub 2017 Sep 22.
8
Nanoscale Metal-Organic Framework Overcomes Hypoxia for Photodynamic Therapy Primed Cancer Immunotherapy.
J Am Chem Soc. 2018 May 2;140(17):5670-5673. doi: 10.1021/jacs.8b01072. Epub 2018 Apr 23.
9
Multifunctional (3-in-1) cancer theranostics applications of hydroxyquinoline-appended polyfluorene nanoparticles.
Chem Sci. 2017 Nov 1;8(11):7566-7575. doi: 10.1039/c7sc03321d. Epub 2017 Aug 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验