State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian 116024 , China.
Research Institute of Dalian University of Technology in Shenzhen , Shenzhen 518057 , China.
J Am Chem Soc. 2019 Feb 13;141(6):2695-2702. doi: 10.1021/jacs.8b13141. Epub 2019 Jan 30.
Strong oxygen dependence, poor tumor targeting, and limited treatment depth have been considered as the "Achilles' heels" facing the clinical usage of photodynamic therapy (PDT). Different from common approaches, here, we propose an innovative tactic by using photon-initiated dyad cationic superoxide radical (O) generator (ENBOS) featuring "0 + 1 > 1" amplification effect to simultaneously overcome these drawbacks. In particular, by taking advantage of the Förster resonance energy transfer theory, the energy donor successfully endows ENBOS with significantly enhanced NIR absorbance and photon utility, which in turn lead to ENBOS more easily activated and generating more O in deep tissues, that thus dramatically intensifies the type I PDT against hypoxic deep tumors. Moreover, benefiting from the dyad cationic feature, ENBOS achieves superior "structure-inherent targeting" abilities with the signal-to-background ratio as high as 25.2 at 48 h post intravenous injection, offering opportunities for accurate imaging-guided tumor treatment. Meanwhile, the intratumoral accumulation and retention performance are also markedly improved (>120 h). On the basis of these unique merits, ENBOS selectively inhibits the deep-seated hypoxic tumor proliferation at a low light-dose irradiation. Therefore, this delicate design may open new horizons and cause a paradigm change for PDT in future cancer therapy.
强氧依赖性、差的肿瘤靶向性和有限的治疗深度被认为是光动力疗法(PDT)临床应用所面临的“阿喀琉斯之踵”。与常见方法不同,在这里,我们提出了一种创新策略,即使用具有“0+1>1”放大效应的光引发二聚阳离子超氧自由基(O)发生器(ENBOS)来克服这些缺点。特别是,利用福斯特共振能量转移理论,能量供体成功地赋予了 ENBOS 显著增强的近红外吸收和光子利用效率,进而使 ENBOS 更容易在深部组织中被激活并产生更多的 O,从而极大地增强了针对缺氧深部肿瘤的 I 型 PDT。此外,得益于二聚阳离子的特性,ENBOS 具有优异的“结构固有靶向”能力,静脉注射后 48 小时的信号背景比高达 25.2,为准确的成像引导肿瘤治疗提供了机会。同时,肿瘤内的积累和保留性能也显著提高(>120 小时)。在此独特优势的基础上,ENBOS 可在低光剂量照射下选择性抑制深部缺氧肿瘤的增殖。因此,这种精巧的设计可能为未来癌症治疗中的 PDT 开辟新的视野并带来范式转变。