Suppr超能文献

一种用于癌症光动力疗法和荧光成像的 APN 激活近红外光敏剂。

An APN-activated NIR photosensitizer for cancer photodynamic therapy and fluorescence imaging.

作者信息

Zhou Xiao, Li Haidong, Shi Chao, Xu Feng, Zhang Zhen, Yao Qichao, Ma He, Sun Wen, Shao Kun, Du Jianjun, Long Saran, Fan Jiangli, Wang Jingyun, Peng Xiaojun

机构信息

State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China.

State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, PR China; Shenzhen Research Institute, Dalian University of Technology, Nanshan District, Shenzhen, 518057, PR China.

出版信息

Biomaterials. 2020 Sep;253:120089. doi: 10.1016/j.biomaterials.2020.120089. Epub 2020 May 3.

Abstract

Photodynamic therapy has been developed as a prospective cancer treatment in recent years. Nevertheless, conventional photosensitizers suffer from lacking recognition and specificity to tumors, which causing severe side effects to normal tissues, while the enzyme-activated photosensitizers are capable of solving these conundrums due to high selectivity towards tumors. APN (Aminopeptidase N, APN/CD13), a tumor marker, has become a crucial targeting substance owing to its highly expressed on the cell membrane surface in various tumors, which has become a key point in the research of anti-tumor drug and fluorescence probe. Based on it, herein an APN-activated near-infrared (NIR) photosensitizer (APN-CyI) for tumor imaging and photodynamic therapy has been firstly developed and successfully applied in vitro and in vivo. Studies showed that APN-CyI could be activated by APN in tumor cells, hydrolyzed to fluorescent CyI-OH, which specifically located in mitochondria in cancer cells and exhibited a high singlet oxygen yield under NIR irradiation, and efficiently induced cancer cell apoptosis. Dramatically, the in vivo assays on Balb/c mice showed that APN-CyI could achieve NIR fluorescence imaging (λ = 717 nm) for endogenous APN in tumors and possessed an efficient tumor suppression effect under NIR irradiation.

摘要

近年来,光动力疗法已发展成为一种有前景的癌症治疗方法。然而,传统的光敏剂对肿瘤缺乏识别能力和特异性,这会对正常组织造成严重的副作用,而酶激活的光敏剂由于对肿瘤具有高选择性,能够解决这些难题。氨肽酶N(APN,氨肽酶N/CD13)作为一种肿瘤标志物,因其在各种肿瘤的细胞膜表面高度表达,已成为一种关键的靶向物质,这已成为抗肿瘤药物和荧光探针研究的一个关键点。基于此,本文首次开发了一种用于肿瘤成像和光动力治疗的APN激活的近红外(NIR)光敏剂(APN-CyI),并在体外和体内成功应用。研究表明,APN-CyI可被肿瘤细胞中的APN激活,水解为荧光性的CyI-OH,其特异性定位于癌细胞的线粒体中,并在近红外照射下表现出高单线态氧产率,且能有效诱导癌细胞凋亡。引人注目的是,对Balb/c小鼠的体内实验表明,APN-CyI能够对肿瘤内源性APN实现近红外荧光成像(λ = 717 nm),并在近红外照射下具有有效的肿瘤抑制作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08a0/7196320/e22002a9de3e/sc1_lrg.jpg

相似文献

1
An APN-activated NIR photosensitizer for cancer photodynamic therapy and fluorescence imaging.
Biomaterials. 2020 Sep;253:120089. doi: 10.1016/j.biomaterials.2020.120089. Epub 2020 May 3.
3
Reversible pH-switchable NIR-II nano-photosensitizer for precise imaging and photodynamic therapy of tumors.
Acta Biomater. 2024 Oct 15;188:315-328. doi: 10.1016/j.actbio.2024.09.001. Epub 2024 Sep 5.
4
A Glutathione Activatable Photosensitizer for Combined Photodynamic and Gas Therapy under Red Light Irradiation.
Adv Healthc Mater. 2022 Feb;11(4):e2102017. doi: 10.1002/adhm.202102017. Epub 2021 Dec 2.
6
Tumor-Activated Water-Soluble Photosensitizers for Near-Infrared Photodynamic Cancer Therapy.
ACS Appl Mater Interfaces. 2018 May 16;10(19):16335-16343. doi: 10.1021/acsami.8b04710. Epub 2018 May 3.
9
Sharp pH-sensitive amphiphilic polypeptide macrophotosensitizer for near infrared imaging-guided photodynamic therapy.
Nanomedicine. 2019 Jan;15(1):198-207. doi: 10.1016/j.nano.2018.09.017. Epub 2018 Oct 11.

引用本文的文献

1
Dyad System of BOAHY-BODIPY Conjugates as Novel Photoswitchable Photosensitizers for Photodynamic Therapy.
J Med Chem. 2025 May 22;68(10):9947-9957. doi: 10.1021/acs.jmedchem.4c02633. Epub 2025 Jan 31.
2
Smart molecular designs and applications of activatable organic photosensitizers.
Nat Rev Chem. 2025 Jan;9(1):46-60. doi: 10.1038/s41570-024-00662-7. Epub 2024 Nov 6.
3
Visible Tracking of Small Molecules of Gases with Fluorescent Donors.
Chem Biomed Imaging. 2024 Apr 1;2(6):401-412. doi: 10.1021/cbmi.4c00006. eCollection 2024 Jun 24.
4
Cyanine dyes in the mitochondria-targeting photodynamic and photothermal therapy.
Commun Chem. 2024 Aug 13;7(1):180. doi: 10.1038/s42004-024-01256-6.
5
Fluorescent small molecule donors.
Chem Soc Rev. 2024 Jun 17;53(12):6345-6398. doi: 10.1039/d3cs00124e.
6
Theranostic Fluorescent Probes.
Chem Rev. 2024 Mar 13;124(5):2699-2804. doi: 10.1021/acs.chemrev.3c00778. Epub 2024 Feb 29.
7
Photodynamic Therapy in Pigmented Basal Cell Carcinoma-A Review.
Biomedicines. 2023 Nov 20;11(11):3099. doi: 10.3390/biomedicines11113099.
8
Theranostics with photodynamic therapy for personalized medicine: to see and to treat.
Theranostics. 2023 Oct 9;13(15):5501-5544. doi: 10.7150/thno.87363. eCollection 2023.
10
Highly Efficient Photosensitizers with Molecular Vibrational Torsion for Cancer Photodynamic Therapy.
ACS Cent Sci. 2023 Jul 17;9(8):1679-1691. doi: 10.1021/acscentsci.3c00611. eCollection 2023 Aug 23.

本文引用的文献

1
Tumor-targeting, enzyme-activated nanoparticles for simultaneous cancer diagnosis and photodynamic therapy.
J Mater Chem B. 2016 Jan 7;4(1):113-120. doi: 10.1039/c5tb02041g. Epub 2015 Nov 30.
2
Aminopeptidase N Activatable Fluorescent Probe for Tracking Metastatic Cancer and Image-Guided Surgery via Spraying.
J Am Chem Soc. 2020 Apr 1;142(13):6381-6389. doi: 10.1021/jacs.0c01365. Epub 2020 Mar 20.
3
Hypoxia-activated NIR photosensitizer anchoring in the mitochondria for photodynamic therapy.
Chem Sci. 2019 Oct 2;10(45):10586-10594. doi: 10.1039/c9sc03355f. eCollection 2019 Dec 7.
4
Catalase-based liposomal for reversing immunosuppressive tumor microenvironment and enhanced cancer chemo-photodynamic therapy.
Biomaterials. 2020 Mar;233:119755. doi: 10.1016/j.biomaterials.2020.119755. Epub 2020 Jan 2.
6
Superoxide Radical Photogenerator with Amplification Effect: Surmounting the Achilles' Heels of Photodynamic Oncotherapy.
J Am Chem Soc. 2019 Feb 13;141(6):2695-2702. doi: 10.1021/jacs.8b13141. Epub 2019 Jan 30.
7
Oxygenated theranostic nanoplatforms with intracellular agglomeration behavior for improving the treatment efficacy of hypoxic tumors.
Biomaterials. 2019 Mar;197:129-145. doi: 10.1016/j.biomaterials.2019.01.002. Epub 2019 Jan 4.
8
De Novo Design of Phototheranostic Sensitizers Based on Structure-Inherent Targeting for Enhanced Cancer Ablation.
J Am Chem Soc. 2018 Nov 21;140(46):15820-15826. doi: 10.1021/jacs.8b09117. Epub 2018 Nov 9.
9
Near-Infrared Light-Initiated Molecular Superoxide Radical Generator: Rejuvenating Photodynamic Therapy against Hypoxic Tumors.
J Am Chem Soc. 2018 Nov 7;140(44):14851-14859. doi: 10.1021/jacs.8b08658. Epub 2018 Oct 26.
10
Hypoxic tumor therapy by hemoglobin-mediated drug delivery and reversal of hypoxia-induced chemoresistance.
Biomaterials. 2018 Nov;182:145-156. doi: 10.1016/j.biomaterials.2018.08.004. Epub 2018 Aug 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验