Garcelon Nicolas, Burgun Anita, Salomon Rémi, Neuraz Antoine
Inserm U1163, Imagine Institute, Paris Center University, Paris, France; Inserm, Cordeliers Research Center, U1138, eq 22, Paris Descartes University, Sorbonne Paris-Cite, Paris, France.
Inserm, Cordeliers Research Center, U1138, eq 22, Paris Descartes University, Sorbonne Paris-Cite, Paris, France; Department of Medical Informatics, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.
Kidney Int. 2020 Apr;97(4):676-686. doi: 10.1016/j.kint.2019.11.037. Epub 2020 Jan 14.
With the emergence of electronic health records, the reuse of clinical data offers new perspectives for the diagnosis and management of patients with rare diseases. However, there are many obstacles to the repurposing of clinical data. The development of decision support systems depends on the ability to recruit patients, extract and integrate the patients' data, mine and stratify these data, and integrate the decision support algorithm into patient care. This last step requires an adaptability of the electronic health records to integrate learning health system tools. In this literature review, we examine the research that provides solutions to unlock these barriers and accelerate translational research: structured electronic health records and free-text search engines to find patients, data warehouses and natural language processing to extract phenotypes, machine learning algorithms to classify patients, and similarity metrics to diagnose patients. Medical informatics is experiencing an impellent request to develop decision support systems, and this requires ethical considerations for clinicians and patients to ensure appropriate use of health data.
随着电子健康记录的出现,临床数据的再利用为罕见病患者的诊断和管理提供了新的视角。然而,临床数据的重新利用存在许多障碍。决策支持系统的开发取决于招募患者、提取和整合患者数据、挖掘和分层这些数据以及将决策支持算法整合到患者护理中的能力。最后这一步需要电子健康记录具备适应性,以整合学习型健康系统工具。在这篇文献综述中,我们研究了为消除这些障碍并加速转化研究提供解决方案的研究:用于查找患者的结构化电子健康记录和自由文本搜索引擎、用于提取表型的数据仓库和自然语言处理、用于对患者进行分类的机器学习算法以及用于诊断患者的相似性度量。医学信息学正面临着开发决策支持系统的迫切需求,这需要临床医生和患者进行伦理考量,以确保健康数据的合理使用。