Department of Biology, Faculty of Science, Karadeniz Technical University, 61080, Trabzon, Turkey.
Department of Forestry Engineering, Faculty of Forestry, Artvin Coruh University, 08000, Artvin, Turkey.
Photosynth Res. 2020 Apr;144(1):35-48. doi: 10.1007/s11120-020-00727-w. Epub 2020 Feb 28.
Increased photosynthetic efficiencies in genotypes with greater proline level and in crops treated with proline under water deficit have been reported in recent years, but the biochemical and molecular mechanisms of this process are still not known. We examined photosystem II (PSII) activity, photosynthetic enzymes, ribulose 1,5-bisphosphate carboxylase/oxygenase (rubisco), phosphoenolpyruvate carboxylase (PEPc), rubisco activase (RCA), and chlorophyll metabolic enzymes, magnesium chelatase (Mg-CHLI), and chlorophyllase (Chlase), which would be the primary targets of exogenous proline to provide photosynthetic protection to plants under PEG-induced short-term water deficit. Two maize genotypes W23/M14 with greater proline content and Şafak with low proline content were hydroponically grown for 21-23 days, and then the seedlings were subjected to water deficit (- 0.75 MPa) induced by PEG for 0, 4, and 8 h. Before the seedlings were exposed to the water deficit, proline (1 mM) was applied to the rooting medium of the Şafak genotype for 2 days. The time course effects of the applications showed that exogenous proline significantly enhanced PSII efficiency, PEPc activity, rubisco activity, and the relative expression levels of PEPc, rubisco large subunit, rubisco small subunit, and RCA genes at 0, 4, and 8 h. The W23/M14 genotype had higher rubisco quantity than the Şafak genotype at all time periods. Proline pre-treatment under the stress-free and PEG conditions reduced the activity of Chlase and the gene expressions of Chlase, while it enhanced Mg-CHLI gene expression at 0, 4, and 8 h. Taken together, the results indicated that the primary target of proline-stimulated signaling in maize seedlings exposed to short-term severe water deficit may be to induce PSII efficiency, activities of carbon dioxide fixation enzymes and chlorophyll metabolism and mitigate chlorophyll degradation.
近年来,有报道称在水分亏缺下,脯氨酸含量较高的基因型和经脯氨酸处理的作物的光合效率增加,但这一过程的生化和分子机制仍不清楚。我们检测了光合系统 II(PSII)活性、光合酶、核酮糖 1,5-二磷酸羧化酶/加氧酶(Rubisco)、磷酸烯醇丙酮酸羧化酶(PEPc)、Rubisco 激活酶(RCA)以及叶绿素代谢酶、镁螯合酶(Mg-CHLI)和叶绿素酶(Chlase),这些酶可能是脯氨酸的主要作用靶点,在 PEG 诱导的短期水分亏缺下为植物提供光合保护。两个脯氨酸含量较高的玉米基因型 W23/M14 和 Şafak 以及一个脯氨酸含量较低的基因型 Şafak 进行水培,培养 21-23 天,然后幼苗在 PEG 诱导的水分亏缺下(-0.75 MPa)处理 0、4 和 8 h。在幼苗暴露于水分亏缺之前,将脯氨酸(1 mM)施加到 Şafak 基因型的生根培养基中 2 天。时间进程效应的应用表明,外源脯氨酸在 0、4 和 8 h 时显著提高了 PSII 效率、PEPc 活性、Rubisco 活性以及 PEPc、Rubisco 大亚基、Rubisco 小亚基和 RCA 基因的相对表达水平。在所有时间点,W23/M14 基因型的 Rubisco 数量均高于 Şafak 基因型。在无胁迫和 PEG 条件下,脯氨酸预处理降低了 Chlase 的活性和 Chlase 基因的表达,但在 0、4 和 8 h 时增强了 Mg-CHLI 基因的表达。总之,结果表明,在短期严重水分亏缺下暴露的玉米幼苗中,脯氨酸刺激信号的主要靶标可能是诱导 PSII 效率、二氧化碳固定酶和叶绿素代谢活性,并减轻叶绿素降解。