Suppr超能文献

基于分布式机器学习的可扩展智能手表药物摄入检测系统。

A Scalable Smartwatch-Based Medication Intake Detection System Using Distributed Machine Learning.

机构信息

Data Science, University of San Francisco, San Francisco, CA, USA.

University of California, San Diego, CA, USA.

出版信息

J Med Syst. 2020 Feb 28;44(4):76. doi: 10.1007/s10916-019-1518-8.

Abstract

Poor Medication adherence causes significant economic impact resulting in hospital readmission, hospital visits and other healthcare costs. The authors developed a smartwatch application and a cloud based data pipeline for developing a user-friendly medication intake monitoring system that can contribute to improving medication adherence. The developed Android smartwatch application collects activity sensor data using accelerometer and gyroscope. The cloud-based data pipeline includes distributed data storage, distributed database management system and distributed computing frameworks in order to build a machine learning model which identifies activity types using sensor data. With the proposed sensor data extraction, preprocessing and machine learning algorithms, this study successfully achieved a high F1 score of 0.977 with 13.313 seconds of training time and 0.139 seconds for testing.

摘要

较差的药物依从性会导致显著的经济影响,包括住院再入院、医院就诊和其他医疗保健费用。作者开发了一个智能手表应用程序和一个基于云的数据管道,用于开发一个用户友好的药物摄入监测系统,以有助于提高药物依从性。开发的 Android 智能手表应用程序使用加速度计和陀螺仪收集活动传感器数据。基于云的数据管道包括分布式数据存储、分布式数据库管理系统和分布式计算框架,以便使用传感器数据构建识别活动类型的机器学习模型。通过提出的传感器数据提取、预处理和机器学习算法,本研究成功实现了 0.977 的高 F1 分数,训练时间为 13.313 秒,测试时间为 0.139 秒。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验