Suppr超能文献

基于智能可穿戴传感器的模型,使用羊群优化算法-注意力机制双向长短期记忆网络(SFOA-Bi-LSTM)监测药物依从性

Smart wearable sensor-based model for monitoring medication adherence using sheep flock optimization algorithm-attention-based bidirectional long short-term memory (SFOA-Bi-LSTM).

作者信息

Alatawi Yasser, Amirthalingam Palanisamy, Chellamani Narmatha, Shanmuganathan Manimurugan, Ali Mostafa A Sayed, Alqifari Saleh Fahad, Mani Vasudevan, Dhanasekaran Muralikrishnan, Alqahtani Abdulelah Saeed, Aljabri Ahmed

机构信息

Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia.

Faculty of Computers and Information Technology, University of Tabuk, Tabuk, Saudi Arabia.

出版信息

Digit Health. 2025 Jun 11;11:20552076251349692. doi: 10.1177/20552076251349692. eCollection 2025 Jan-Dec.

Abstract

OBJECTIVE

Medication adherence (MA) is crucial to patient treatment and vital for therapeutic outcomes. Due to its ability to continuously monitor a patient's MA behavior, the recent focus on sensor technology for MA monitoring is a promising development. The primary objective of this research is to implement sensor devices/smart wearables powered by advanced deep learning (DL) techniques to evaluate complex data patterns effectively and make accurate predictions. This study introduces a novel smart wearable sensors-based hand gesture recognition system to predict medication behaviors.

METHODS

A device equipped with accelerometer and gyroscope sensors acquires and analyzes data from hand motions. A mobile app records the data from the smart device, subsequently storing it in a database in .csv file. The data is gathered, preprocessed, and classified to identify MA behavior utilizing the developed DL model known as the sheep flock optimization algorithm-attention-based bidirectional long short-term memory network (SFOA-Bi-LSTM). The data was initially gathered and preprocessed via the -score normalization method. The data samples are classified using the attention-based Bi-LSTM model after undergoing preprocessing. The SFOA method was utilized to optimize the hyperparameters of the attention-based Bi-LSTM model.

RESULTS

The model's performance was examined using a five-fold cross-validation based on recall, accuracy, F1 score, and precision. The SFOA-Bi-LSTM model achieved 98.90% accuracy, 97.80% recall, 98.80% precision, and 98.62% F1 score, demonstrating its novelty and potential to inspire and motivate healthcare professionals to adopt this promising method for monitoring MA in healthcare applications.

CONCLUSION

The results indicate that the SFOA-Bi-LSTM model performs well in predicting MA. The SFOA-Bi-LSTM model offers several unique advantages, including efficient hyperparameter tuning via the SFOA, enhanced feature representation through an attention mechanism, and comprehensive temporal analysis using Bi-LSTM. It demonstrates superior performance compared to conventional models while being robust to noisy data due to effective preprocessing.

摘要

目的

药物依从性(MA)对患者治疗至关重要,对治疗结果起着关键作用。由于能够持续监测患者的MA行为,近期对用于MA监测的传感器技术的关注是一项很有前景的进展。本研究的主要目的是应用由先进深度学习(DL)技术驱动的传感器设备/智能可穿戴设备,以有效评估复杂的数据模式并做出准确预测。本研究引入了一种基于智能可穿戴传感器的新型手势识别系统来预测用药行为。

方法

一个配备加速度计和陀螺仪传感器的设备采集并分析手部动作数据。一个移动应用程序记录来自智能设备的数据,随后将其存储在.csv文件的数据库中。利用所开发的名为羊群优化算法-注意力双向长短期记忆网络(SFOA-Bi-LSTM)的DL模型对数据进行收集、预处理和分类,以识别MA行为。数据最初通过z分数归一化方法进行收集和预处理。经过预处理后,使用基于注意力的Bi-LSTM模型对数据样本进行分类。利用SFOA方法优化基于注意力的Bi-LSTM模型的超参数。

结果

基于召回率、准确率、F1分数和精确率,使用五折交叉验证对模型性能进行了检验。SFOA-Bi-LSTM模型的准确率达到98.90%,召回率达到97.80%,精确率达到98.80%,F1分数达到98.62%,证明了其新颖性以及激发和促使医疗保健专业人员在医疗保健应用中采用这种有前景的MA监测方法的潜力。

结论

结果表明SFOA-Bi-LSTM模型在预测MA方面表现良好。SFOA-Bi-LSTM模型具有几个独特的优势,包括通过SFOA进行高效的超参数调整、通过注意力机制增强特征表示以及使用Bi-LSTM进行全面的时间分析。与传统模型相比,它表现出卓越的性能,同时由于有效的预处理,对噪声数据具有鲁棒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/356e/12163270/b8125aacf754/10.1177_20552076251349692-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验