Suppr超能文献

超越前馈扫掠:视觉皮层中的反馈计算。

Beyond the feedforward sweep: feedback computations in the visual cortex.

机构信息

Children's Hospital, Harvard Medical School and Center for Brains, Minds, and Machines, Boston, Massachusetts.

Cognitive Linguistic and Psychological Sciences, Carney Institute for Brain Science, Brown University, Providence, Rhode Island.

出版信息

Ann N Y Acad Sci. 2020 Mar;1464(1):222-241. doi: 10.1111/nyas.14320. Epub 2020 Feb 28.

Abstract

Visual perception involves the rapid formation of a coarse image representation at the onset of visual processing, which is iteratively refined by late computational processes. These early versus late time windows approximately map onto feedforward and feedback processes, respectively. State-of-the-art convolutional neural networks, the main engine behind recent machine vision successes, are feedforward architectures. Their successes and limitations provide critical information regarding which visual tasks can be solved by purely feedforward processes and which require feedback mechanisms. We provide an overview of recent work in cognitive neuroscience and machine vision that highlights the possible role of feedback processes for both visual recognition and beyond. We conclude by discussing important open questions for future research.

摘要

视觉感知涉及在视觉处理开始时快速形成粗略的图像表示,然后通过后期计算过程进行迭代细化。这些早期和晚期的时间窗口分别大致对应于前馈和反馈过程。最新机器视觉成功背后的主要引擎——最先进的卷积神经网络是前馈架构。它们的成功和局限性为我们提供了重要信息,即哪些视觉任务可以仅通过前馈过程解决,哪些任务需要反馈机制。我们提供了认知神经科学和机器视觉领域的最新研究工作的概述,强调了反馈过程对于视觉识别及其他方面的可能作用。最后,我们讨论了未来研究的重要开放性问题。

相似文献

1
Beyond the feedforward sweep: feedback computations in the visual cortex.超越前馈扫掠:视觉皮层中的反馈计算。
Ann N Y Acad Sci. 2020 Mar;1464(1):222-241. doi: 10.1111/nyas.14320. Epub 2020 Feb 28.
4
Invariant recognition drives neural representations of action sequences.不变性识别驱动动作序列的神经表征。
PLoS Comput Biol. 2017 Dec 18;13(12):e1005859. doi: 10.1371/journal.pcbi.1005859. eCollection 2017 Dec.
6
A feedforward architecture accounts for rapid categorization.前馈架构有助于快速分类。
Proc Natl Acad Sci U S A. 2007 Apr 10;104(15):6424-9. doi: 10.1073/pnas.0700622104. Epub 2007 Apr 2.
7
Reinforcement Learning of Linking and Tracing Contours in Recurrent Neural Networks.循环神经网络中轮廓连接与追踪的强化学习
PLoS Comput Biol. 2015 Oct 23;11(10):e1004489. doi: 10.1371/journal.pcbi.1004489. eCollection 2015 Oct.

引用本文的文献

4
Neural correlates of minimal recognizable configurations in the human brain.人类大脑中最小可识别构型的神经关联
Cell Rep. 2025 Mar 25;44(3):115429. doi: 10.1016/j.celrep.2025.115429. Epub 2025 Mar 16.

本文引用的文献

1
Deep Learning: The Good, the Bad, and the Ugly.深度学习:好的、坏的和丑的。
Annu Rev Vis Sci. 2019 Sep 15;5:399-426. doi: 10.1146/annurev-vision-091718-014951. Epub 2019 Aug 8.
5
Recurrent computations for visual pattern completion.视觉模式完成的反复计算。
Proc Natl Acad Sci U S A. 2018 Aug 28;115(35):8835-8840. doi: 10.1073/pnas.1719397115. Epub 2018 Aug 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验