Children's Hospital, Harvard Medical School and Center for Brains, Minds, and Machines, Boston, Massachusetts.
Cognitive Linguistic and Psychological Sciences, Carney Institute for Brain Science, Brown University, Providence, Rhode Island.
Ann N Y Acad Sci. 2020 Mar;1464(1):222-241. doi: 10.1111/nyas.14320. Epub 2020 Feb 28.
Visual perception involves the rapid formation of a coarse image representation at the onset of visual processing, which is iteratively refined by late computational processes. These early versus late time windows approximately map onto feedforward and feedback processes, respectively. State-of-the-art convolutional neural networks, the main engine behind recent machine vision successes, are feedforward architectures. Their successes and limitations provide critical information regarding which visual tasks can be solved by purely feedforward processes and which require feedback mechanisms. We provide an overview of recent work in cognitive neuroscience and machine vision that highlights the possible role of feedback processes for both visual recognition and beyond. We conclude by discussing important open questions for future research.
视觉感知涉及在视觉处理开始时快速形成粗略的图像表示,然后通过后期计算过程进行迭代细化。这些早期和晚期的时间窗口分别大致对应于前馈和反馈过程。最新机器视觉成功背后的主要引擎——最先进的卷积神经网络是前馈架构。它们的成功和局限性为我们提供了重要信息,即哪些视觉任务可以仅通过前馈过程解决,哪些任务需要反馈机制。我们提供了认知神经科学和机器视觉领域的最新研究工作的概述,强调了反馈过程对于视觉识别及其他方面的可能作用。最后,我们讨论了未来研究的重要开放性问题。