Suppr超能文献

并非那么“聪明”:学习相同-不同关系使前馈神经网络面临挑战。

Not-So-CLEVR: learning same-different relations strains feedforward neural networks.

作者信息

Kim Junkyung, Ricci Matthew, Serre Thomas

机构信息

Department of Cognitive, Linguistic & Psychological Sciences, Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA.

出版信息

Interface Focus. 2018 Aug 6;8(4):20180011. doi: 10.1098/rsfs.2018.0011. Epub 2018 Jun 15.

Abstract

The advent of deep learning has recently led to great successes in various engineering applications. As a prime example, convolutional neural networks, a type of feedforward neural network, now approach human accuracy on visual recognition tasks like image classification and face recognition. However, here we will show that feedforward neural networks struggle to learn abstract visual relations that are effortlessly recognized by non-human primates, birds, rodents and even insects. We systematically study the ability of feedforward neural networks to learn to recognize a variety of visual relations and demonstrate that same-different visual relations pose a particular strain on these networks. Networks fail to learn same-different visual relations when stimulus variability makes rote memorization difficult. Further, we show that learning same-different problems becomes trivial for a feedforward network that is fed with perceptually grouped stimuli. This demonstration and the comparative success of biological vision in learning visual relations suggests that feedback mechanisms such as attention, working memory and perceptual grouping may be the key components underlying human-level abstract visual reasoning.

摘要

深度学习的出现最近在各种工程应用中取得了巨大成功。一个典型的例子是卷积神经网络,它是前馈神经网络的一种,现在在图像分类和人脸识别等视觉识别任务上已接近人类的准确率。然而,我们将在此表明,前馈神经网络在学习抽象视觉关系方面存在困难,而这些关系非人类灵长类动物、鸟类、啮齿动物甚至昆虫都能轻松识别。我们系统地研究了前馈神经网络学习识别各种视觉关系的能力,并证明相同 - 不同的视觉关系给这些网络带来了特别的压力。当刺激的变异性使死记硬背变得困难时,网络无法学习相同 - 不同的视觉关系。此外,我们表明,对于输入经过感知分组刺激的前馈网络来说,学习相同 - 不同问题变得轻而易举。这一论证以及生物视觉在学习视觉关系方面的相对成功表明,诸如注意力、工作记忆和感知分组等反馈机制可能是人类水平抽象视觉推理的关键组成部分。

相似文献

2
Beyond the feedforward sweep: feedback computations in the visual cortex.超越前馈扫掠:视觉皮层中的反馈计算。
Ann N Y Acad Sci. 2020 Mar;1464(1):222-241. doi: 10.1111/nyas.14320. Epub 2020 Feb 28.
5
Reinforcement Learning of Linking and Tracing Contours in Recurrent Neural Networks.循环神经网络中轮廓连接与追踪的强化学习
PLoS Comput Biol. 2015 Oct 23;11(10):e1004489. doi: 10.1371/journal.pcbi.1004489. eCollection 2015 Oct.
8
Deep neural networks and image classification in biological vision.深度神经网络与生物视觉中的图像分类。
Vision Res. 2022 Aug;197:108058. doi: 10.1016/j.visres.2022.108058. Epub 2022 Apr 26.

引用本文的文献

3
Abstract visual reasoning based on algebraic methods.基于代数方法的抽象视觉推理。
Sci Rep. 2025 Jan 28;15(1):3482. doi: 10.1038/s41598-025-86804-3.
5
A Benchmark for Compositional Visual Reasoning.组合视觉推理的一个基准。
Adv Neural Inf Process Syst. 2022 Dec;35(DB):29776-29788.
7
Configural relations in humans and deep convolutional neural networks.人类与深度卷积神经网络中的构型关系。
Front Artif Intell. 2023 Mar 1;5:961595. doi: 10.3389/frai.2022.961595. eCollection 2022.
9
Methods for Facial Expression Recognition with Applications in Challenging Situations.基于应用于复杂环境的表情识别方法。
Comput Intell Neurosci. 2022 May 25;2022:9261438. doi: 10.1155/2022/9261438. eCollection 2022.

本文引用的文献

6
Deep Neural Networks as a Computational Model for Human Shape Sensitivity.深度神经网络作为人类形状敏感度的计算模型
PLoS Comput Biol. 2016 Apr 28;12(4):e1004896. doi: 10.1371/journal.pcbi.1004896. eCollection 2016 Apr.
7
Models of visual categorization.视觉分类模型。
Wiley Interdiscip Rev Cogn Sci. 2016 May-Jun;7(3):197-213. doi: 10.1002/wcs.1385. Epub 2016 Mar 20.
8
Atoms of recognition in human and computer vision.人类视觉与计算机视觉中的识别原子。
Proc Natl Acad Sci U S A. 2016 Mar 8;113(10):2744-9. doi: 10.1073/pnas.1513198113. Epub 2016 Feb 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验