Central Laser Facility, Science and Technology Facilities Council, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell, UK.
Department of Physics, SUPA, University of Strathclyde, Glasgow, UK.
Appl Spectrosc. 2020 Jun;74(6):720-727. doi: 10.1177/0003702820913636. Epub 2020 Mar 30.
Time-resolved temperature-jump infrared absorption spectroscopy at a 0.5 to 1 kHz repetition rate is presented. A 1 kHz neodymium-doped yttrium aluminum garnet (Nd:YAG) laser pumping an optical parametric oscillator provided >70 µJ, 3.75 µm pump pulses, which delivered a temperature jump via excitation of the O-D stretch of a DO solution. A 10 kHz train of mid-infrared probe pulses was used to monitor spectral changes following the temperature jump. Calibration with trifluoroacetic acid solution showed that a temperature jump of 10 K lasting for tens of microseconds was achieved, sufficient to observe fast processes in functionally relevant biomolecular mechanisms. Modeling of heating profiles across ≤10 µm path length cells and subsequent cooling dynamics are used to describe the initial <100 ns cooling at the window surface and subsequent, >10 µs cooling dynamics of the bulk solution.
介绍了一种重复频率为 0.5 至 1 kHz 的时间分辨温度跃变红外吸收光谱技术。一台 1 kHz 的掺钕钇铝石榴石(Nd:YAG)激光器泵浦一台光参量振荡器,提供了 >70 μJ、3.75 μm 的泵浦脉冲,通过激发 DO 溶液的 O-D 伸缩来实现温度跃变。使用 10 kHz 的中红外探测脉冲序列来监测温度跃变后的光谱变化。用三氟乙酸溶液进行校准表明,实现了持续数十微秒的 10 K 温度跃变,足以观察到功能相关生物分子机制中的快速过程。对 ≤10 μm 路径长度池内的加热分布进行建模,并对后续的冷却动力学进行模拟,以描述初始 <100 ns 时窗口表面的冷却和随后 >10 μs 时的体溶液冷却动力学。