Suppr超能文献

核壳生物活性陶瓷的机器人铸造:调整成分分布以促进高效的牙槽骨再生与修复

Core-Shell Bioactive Ceramic Robocasting: Tuning Component Distribution Beneficial for Highly Efficient Alveolar Bone Regeneration and Repair.

作者信息

Lei Lihong, Wei Yingming, Wang Zhongxiu, Han Jiayin, Sun Jianwei, Chen Yi, Yang Xianyan, Wu Yanmin, Chen Lili, Gou Zhongru

机构信息

Department of Periodontics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310008, China.

Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou 310058, China.

出版信息

ACS Biomater Sci Eng. 2020 Apr 13;6(4):2376-2387. doi: 10.1021/acsbiomaterials.0c00152. Epub 2020 Mar 18.

Abstract

Biodegradable ceramic (composite) scaffolds have inspired worldwide efforts in bone regenerative medicine. However, balancing the biodegradation with the bone's natural healing time scale remains difficult; in particularl, there is a lack of strategy to control component distribution and bioactive ion release favorable for stimulating alveolar bone tissue ingrowth in situ within an expected time window. Here we aimed to develop the robocasting core-shell bioceramic scaffolds and investigate their physicochemical properties and osteostimulative capability in beagle alveolar bone defect model. The β-tircalcium phosphate (TCP) and 5% Mg-doped calcium silicate (CSi-Mg5) were used to fabricate the core-shell-typed TCP@TCP, CSi-Mg5@CSi-Mg5 and TCP@CSi-Mg5 porous scaffolds. Both in vitro and in vivo studies show that the CSi-Mg5 shell readily contributed to the initial mechanical strength and early-stage osteogenic activity of the TCP@CSi-Mg5 scaffolds, including tunable ion release, enhanced biodegradation, and outstanding osteogenesis capacity in comparison with the CSi-Mg5@CSi-Mg5 scaffolds and clinically available Bio-Oss granules in alveolar bone defects. Therefore, the presented core-shell robocasting of bioceramic technology and porous scaffold biomaterials enables an accurate preparation of highly bioactive and biodegradable scaffolds with a large freedom of design, and thereby may be beneficial for fabricating osteostimulation-tuned porous scaffolds for the challengeable alveolar bone defect reconstruction medicine.

摘要

可生物降解陶瓷(复合材料)支架激发了全球在骨再生医学领域的研究努力。然而,要使生物降解与骨骼的自然愈合时间尺度相平衡仍然很困难;特别是,缺乏一种策略来控制成分分布和生物活性离子释放,以利于在预期的时间窗口内原位刺激牙槽骨组织向内生长。在此,我们旨在开发机器人铸造核壳生物陶瓷支架,并在比格犬牙槽骨缺损模型中研究其物理化学性质和骨刺激能力。使用β-磷酸三钙(TCP)和5%镁掺杂硅酸钙(CSi-Mg5)制备核壳型TCP@TCP、CSi-Mg5@CSi-Mg5和TCP@CSi-Mg5多孔支架。体外和体内研究均表明,与CSi-Mg5@CSi-Mg5支架及临床上可用的Bio-Oss颗粒相比,CSi-Mg5壳层有助于TCP@CSi-Mg5支架的初始机械强度和早期成骨活性,包括可调节的离子释放、增强的生物降解以及在牙槽骨缺损中出色的成骨能力。因此,所展示的生物陶瓷技术的核壳机器人铸造和多孔支架生物材料能够精确制备具有高度生物活性和可生物降解性且设计自由度大的支架,从而可能有利于制造用于挑战性牙槽骨缺损重建医学的骨刺激调节多孔支架。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验