Suppr超能文献

具有改善的临界尺寸颅骨缺损骨再生能力的3D机器人铸造镁掺杂硅灰石/TCP生物陶瓷支架

3D robocasting magnesium-doped wollastonite/TCP bioceramic scaffolds with improved bone regeneration capacity in critical sized calvarial defects.

作者信息

Shao Huifeng, Liu An, Ke Xiurong, Sun Miao, He Yong, Yang Xianyan, Fu Jianzhong, Zhang Lei, Yang Guojing, Liu Yanming, Xu Sanzhong, Gou Zhongru

机构信息

State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China.

出版信息

J Mater Chem B. 2017 Apr 28;5(16):2941-2951. doi: 10.1039/c7tb00217c. Epub 2017 Apr 4.

Abstract

Using artificial biomaterials in bone regenerative medicine for highly efficient osteoconduction into the bone defect to decrease the bone healing time is still a challenge. In this research, magnesium (Mg)-doped wollastonite (∼10% Mg was substituted for calcium (Ca) in β-CaSiO) (CSi-Mg10) bioceramic scaffolds with ultrahigh mechanical strength were fabricated using ceramic ink writing three dimensional (3D) printing. To evaluate the potential of other additives on the new bone regeneration efficiency, β-tricalcium phosphate (β-TCP) was introduced to the CSi-Mg10 ceramic ink at a concentration of 15% and the biphasic bioceramic scaffolds (CSi-Mg10/TCP15) were also fabricated using 3D printing. The mechanical characterization indicated that introduction of β-TCP led to nearly 50% mechanical decay, although the effect of the two heating schedules (one- and two-step sintering) on the compressive and flexural strengths of the scaffolds was significantly different. The bone regeneration results in critical sized calvarial defect of rabbits showed that the CSi-Mg10/TCP15 scaffolds displayed a markedly higher osteogenic capability than those on the CSi-Mg10 and β-TCP scaffolds after eight weeks, and reached ∼35% new bone tissue regeneration at 12 weeks postoperatively. These findings demonstrate that the CSi-Mg10/TCP15 bioceramic scaffolds can be well suited for stimulating in situ bone regeneration and for use in tissue engineering applications.

摘要

在骨再生医学中使用人工生物材料,以高效地向骨缺损处进行骨传导,从而缩短骨愈合时间,仍然是一项挑战。在本研究中,采用陶瓷墨水书写三维(3D)打印技术制备了具有超高机械强度的镁(Mg)掺杂硅灰石(在β-CaSiO中约10%的Mg替代了钙(Ca))(CSi-Mg10)生物陶瓷支架。为了评估其他添加剂对新骨再生效率的影响,将β-磷酸三钙(β-TCP)以15%的浓度引入到CSi-Mg10陶瓷墨水中,并同样使用3D打印制备了双相生物陶瓷支架(CSi-Mg10/TCP15)。力学表征表明,引入β-TCP导致了近50%的力学性能衰减,尽管两种加热程序(一步烧结和两步烧结)对支架抗压强度和抗弯强度的影响存在显著差异。兔颅骨临界尺寸缺损的骨再生结果表明,八周后CSi-Mg10/TCP15支架显示出比CSi-Mg10和β-TCP支架明显更高的成骨能力,术后12周新骨组织再生率达到约35%。这些发现表明,CSi-Mg10/TCP15生物陶瓷支架非常适合用于刺激原位骨再生以及组织工程应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验