Suppr超能文献

用于高功率超级电容器的富含缺陷的分级多孔碳

Defect Rich Hierarchical Porous Carbon for High Power Supercapacitors.

作者信息

Cai Peng, Zou Kangyu, Deng Xinglan, Wang Baowei, Zou Guoqiang, Hou Hongshuai, Ji Xiaobo

机构信息

College of Chemistry and Chemical Engineering, Central South University, Changsha, China.

School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China.

出版信息

Front Chem. 2020 Feb 4;8:43. doi: 10.3389/fchem.2020.00043. eCollection 2020.

Abstract

Tuning hierarchical pore structure of carbon materials is an effective way to achieve high energy density under high power density of carbon-based supercapacitors. However, at present, most of methods for regulating pores of carbon materials are too complicated to be achieved. In this work, a durian shell derived porous carbon (DSPC) with abundant porous is prepared through chemical activation as a defect strategy. Hierarchical porous structure can largely enhance the transfer rate of electron/ion. Furthermore, DSPC with multiple porous structure exhibits excellent properties when utilized as electrode materials for electric double layer capacitors (EDLCs), delivering a specific capacitance of 321 F g at 0.5 A g in aqueous electrolyte. Remarkably, a high energy density of 27.7 Wh kg is obtained at 675 W kg in an organic two-electrode device. And large capacity can be remained even at high charge/discharge rate. Significantly, hierarchical porous structure allows efficient ion diffusion and charge transfer, resulting in a prominent cycling stability. This work is looking forward to providing a promising strategy to prepare hierarchical porous carbon-based materials for supercapacitors with ultrafast electron/ion transport.

摘要

调节碳材料的分级孔隙结构是在碳基超级电容器的高功率密度下实现高能量密度的有效途径。然而,目前大多数调节碳材料孔隙的方法过于复杂而难以实现。在这项工作中,通过化学活化制备了具有丰富孔隙的榴莲壳衍生多孔碳(DSPC)作为一种缺陷策略。分级多孔结构可以大大提高电子/离子的传输速率。此外,具有多重多孔结构的DSPC用作双电层电容器(EDLC)的电极材料时表现出优异的性能,在水性电解质中,在0.5 A g下的比电容为321 F g。值得注意的是,在有机双电极装置中,在675 W kg下可获得27.7 Wh kg的高能量密度。即使在高充/放电速率下也能保持大容量。重要的是,分级多孔结构允许有效的离子扩散和电荷转移,从而产生出色的循环稳定性。这项工作期待为制备具有超快电子/离子传输的超级电容器的分级多孔碳基材料提供一种有前景的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c77/7011847/f677290ba9c4/fchem-08-00043-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验