Leng Changyu, Zhao Zongbin, Song Yinzhou, Sun Lulu, Fan Zhuangjun, Yang Yongzhen, Liu Xuguang, Wang Xuzhen, Qiu Jieshan
State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian, 116024, People's Republic of China.
School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, Shandong, People's Republic of China.
Nanomicro Lett. 2020 Oct 27;13(1):8. doi: 10.1007/s40820-020-00535-w.
Carbon-based electric double layer capacitors (EDLCs) hold tremendous potentials due to their high-power performance and excellent cycle stability. However, the practical use of EDLCs is limited by the low energy density in aqueous electrolyte and sluggish diffusion kinetics in organic or/and ionic liquids electrolyte. Herein, 3D carbon frameworks (3DCFs) constructed by interconnected nanocages (10-20 nm) with an ultrathin wall of ca. 2 nm have been fabricated, which possess high specific surface area, hierarchical porosity and good conductive network. After deoxidization, the deoxidized 3DCF (3DCF-DO) exhibits a record low IR drop of 0.064 V at 100 A g and ultrafast charge/discharge rate up to 10 V s. The related device can be charged up to 77.4% of its maximum capacitance in 0.65 s at 100 A g in 6 M KOH. It has been found that the 3DCF-DO has a great affinity to EMIMBF, resulting in a high specific capacitance of 174 F g at 1 A g, and a high energy density of 34 Wh kg at an ultrahigh power density of 150 kW kg at 4 V after a fast charge in 1.11 s. This work provides a facile fabrication of novel 3D carbon frameworks for supercapacitors with ultrafast charge/discharge rate and high energy-power density.
碳基双电层电容器(EDLCs)因其高功率性能和出色的循环稳定性而具有巨大潜力。然而,EDLCs的实际应用受到水系电解质中低能量密度以及有机或/和离子液体电解质中缓慢扩散动力学的限制。在此,已制备出由相互连接的纳米笼(10 - 20纳米)构建的3D碳框架(3DCFs),其具有约2纳米的超薄壁,具有高比表面积、分级孔隙率和良好的导电网络。脱氧后,脱氧的3DCF(3DCF - DO)在100 A g时表现出创纪录的低IR降0.064 V,以及高达10 V s的超快充放电速率。相关器件在6 M KOH中以100 A g充电时,可在0.65 s内充电至其最大电容的77.4%。已发现3DCF - DO对EMIMBF具有很大的亲和力,在1 A g时具有174 F g的高比电容,在1.11 s快速充电后,在4 V的超高功率密度150 kW kg下具有34 Wh kg的高能量密度。这项工作为具有超快充放电速率和高能量 - 功率密度的超级电容器提供了一种简便的新型3D碳框架制备方法。